

UNIVERSITY OF SURREY
Faculty of Engineering and Physical Sciences

Department of Computing

Final Year Project Report

Title: A Secure E-voting Web Application for AGM Elections

Student: Ayoolamide Oye-dada

URN: 6487008

Supervisor: Dr Steve Schneider

Date: 18/05/2021

 2

Declaration of Originality

The work submitted in this report is my own. Where work from others is used, it has been clearly identified

and referenced using IEEE referencing standards. The University of Surrey may seek to confirm this by means

using a plagiarism detection service such as Turnitin UK. Lastly any penalised occurred in the assessment of

this project as a result of plagiarism are fully accepted.

 3

Acknowledgments

I would like to dedicate this work to my mother, for her love and financial support that has allowed this

project to be carried out. Her unwavering faith in my abilities during this academic year has been my light in

moments of darkness.

My adoration and appreciation goes out to my supervisor, Dr Steve Schneider, who has gone above and

beyond to provide the guidance required to complete this project. In addition, I would like to sincerely thank

Alex Harden, Theo Donnell, Katherine Phillips for agreeing to be interviewed and demonstrating how the

USSU’s existing E-Voting System works. Their cooperation has significantly contributed to this project and

stands as a testament to what can be achieved when stakeholders contribute to the development of software.

Lastly, I would also like to thank my friends and support network who have motivated and encouraged me

throughout the completion of this project.

 4

Abstract

Data from the most recent NSS and Pulse survey show that trust and satisfaction in the University of Surrey

Students’ Union is at an all-time low. Many students do not believe that the USSU represents their academic

interests. This is a direct result of the low turnout seen in recent USSU elections. In addition to this the

existing E-Voting system cannot be used in small scale AGM elections. This combined with the Covid-19

pandemic meant that AGMs, which are normally carried out in person, were conducted virtually using

Surveys in Microsoft Teams (an insecure system) using Surveys in Microsoft Teams (an insecure system). To

solve these problems this project details the, design, implementation and testing of a new E-Voting System (a

web application) which will replace the existing E-Voting solution used by the USSU. The hope is that the new

system will boost student trust and participation in elections, making the USSU more representative.

Additionally, the rise in distributed ledger technology and its properties make it ideal for implementing a

secure E-Voting system. More specifically, blockchain, a technology traditionally associated with

cryptocurrencies, can be used to implement a secure E-Voting system. Therefore, the E-Voting solution

implemented in this project leverages private blockchain technology, which differs from the traditional

approaches to E-Voting systems which rely on centralised databases and public blockchains.

 5

Table of Contents

Declaration of Originality .. 2

Acknowledgments ... 3

Abstract .. 4

Statement of Ethics ... 9

 Chapter 1: Introduction ... 13

2.1 Project Overview .. 14

2.2 Background .. 14

2.3 Project Motivation ... 16

2.4 Project Aims & Objectives .. 17

2.5 Success Criteria .. 18

2.6 Methodology ... 18
2.6.1 Chosen Methodology ... 21

2.7 Project Plan .. 21

2.8 Structure of report ... 21

 Chapter 2: Research .. 23

Literature Review .. 23

3.1 What is E-voting? ... 23

3.2 The security problems with E-Voting .. 25

3.3 What makes a good E-Voting system? .. 26

3.3.1 Evaluation .. 28

3.4 Types of E-Voting System ... 29

3.4.1 Centralised Database with Cryptographic Techniques .. 29
3.4.2 Blockchain .. 31
3.4.3 Selecting an Approach - Blockchain ... 33

3.5 Permissionless and Permission Blockchain ... 33
3.5.1 Permissionless Blockchains .. 35
3.5.2 Permissioned ... 36
3.5.3 Evaluation .. 36

 6

3.6 Conclusion ... 38

Technology Review .. 39

3.7 Native, Hybrid, Progressive and Cross platform .. 39

3.7.1 Native ... 39
3.7.2 Hybrid .. 40
3.7.3 Cross-Platform ... 40
3.7.4 Evaluation .. 41
3.7.5 Selecting an Approach (PWA) .. 41

 Chapter 3: Problem Analysis ... 42

4.1 Interviews, Focus groups and Surveys .. 42

4.2 Interviews .. 42

4.2.2 Interview Analysis .. 43

4.3 Focus Groups .. 44
4.3.1 Focus Group Ethical Consideration .. 45
4.3.2 Focus Group Results .. 45

4.4 Surveys .. 45

4.4.1 Survey Objectives ... 46
4.4.2 Survey Target Audience ... 46
4.4.3 Survey Tools and Distribution .. 46
4.4.4 Survey Design ... 47
4.4.5 Survey Ethical Consideration ... 47
4.4.6 Survey Response Analysis .. 48

4.5 4.1.4 The Current System ... 52

4.5.1 Mi-Voice ... 52
4.5.2 AGM Election System ... 54

 Chapter 4: Requirements .. 59

5.1 Overall Description ... 59

5.1.1 Product Perspective and Scope ... 59
5.1.2 Product Features .. 60
5.1.3 User Classes and Characteristics .. 61
5.1.4 Operating Environment ... 62
5.1.5 Constraints ... 62
5.1.6 Assumptions and Dependencies .. 62

 7

5.2 System Requirements .. 62

5.2.1 Functional Requirements ... 63
5.2.2 Non-Functional Requirements ... 65

 Chapter 5: Design ... 66

6.1 System Architecture ... 66

6.2 React Web Application Design .. 67

6.2.1 Use Case Diagram .. 68
6.2.2 Activity diagrams ... 72
6.2.3 Sequence diagrams .. 75
6.2.4 User Interface Design ... 76

6.3 Node.js Server Design .. 80

6.3.1 API Design .. 81

6.4 IBM Blockchain Cloud Design ... 83

6.4.1 Database Design .. 84
6.4.2 Smart Contract Design ... 88

6.5 Design Challenges .. 88

 Chapter 6: Security Analysis .. 89

7.1 Introduction ... 89

7.2 Blockchain Security .. 90

7.2.1 Public Key Infrastructure ... 90

7.3 Risk Assessment ... 91

7.3.1 Risk Identification .. 91

7.4 Risk Analysis ... 94

7.5 Risk treatment ... 96

7.6 Security Design ... 97

7.6.1 Authentication ... 97
7.6.2 Authorisation ... 98
7.6.3 Web Tokens ... 99

 Chapter 7: Implementation ... 100

8.1.1 Repository Overview .. 100

8.2 Important Aspects ... 101

 8

8.3 Deployment .. 103

8.4 Technical Challenges ... 103

 Chapter 8: System Testing ... 105

9.1 Unit Testing ... 105

9.1.1 Node.js Sever ... 106
9.1.2 Chaincode (Smart Contracts) ... 108

9.2 Cross-Device Testing ... 110

9.3 Requirements Testing ... 111

9.3.1 Functional Requirements Test Matrix .. 111
9.3.2 Non-Functional Requirements Test Matrix .. 114
9.3.3 Validation Testing .. 115
9.3.4 Security Testing .. 116

9.4 User Acceptance Testing ... 118

9.4.1 AGM Election Summary ... 118
9.4.2 UAT Findings .. 119
9.4.3 UAT Suggested Improvements .. 120

 Chapter 9: Evaluation & Conclusion .. 121

10.1 Introduction .. 121

10.2 Evaluation of project against objectives .. 121

10.3 Evaluation of E-Voting System ... 124

10.4 Future Work .. 126

10.5 Conclusion .. 127

 References .. 128

 Appendices ... 132

12.1 Appendix A: Consent form .. 132

12.2 Appendix B: Gantt Chart .. 133

12.3 Appendix C: E-Voting System Survey ... 133

12.4 Appendix D: E-Voting System Survey ... 135

12.5 Appendix E UI Validation ... 144

 9

12.6 Appendix F UI Pages Final Version ... 145

Statement of Ethics
The project was carried out following the legal, ethical, social and professional standards outlined in the

British Computing Society Code of Conduct (BCOC), the Computer Misuse Act (1990), the Data Protection Act

(2018) and the Copyright, Designs and Patents Act (1988). These standards were upheld in all stages of the

project, that is: research, design, implementation, and testing.

Do No Harm

The E-Voting system's primary users are University of Surrey students and Student Union Staff members, who

oversee elections. Students and staff members from other universities will need to be considered, as the E-

Voting System will be scaled up to include other universities across the country in further iterations of the E-

Voting System (beyond this project). Therefore, the welfare of students, staff and the wider higher education

community was protected throughout this project.

Data Confidentiality

The E-Voting system will need to collect, manage and process personal and sensitive data from students and

staff. This data includes student identification numbers and emails, which the system uses to determine

eligible voters and track how students voted. To adhere to the Data Protection Act (2018), Microsoft Office

365 APIs were leveraged to check eligible voters. This ensured that the data collected is accurate and up-to-

date with university records.

A private Blockchain was used to implement the system and ensure that the data was processed and stored

securely. This means only valid data controllers that have access to the nodes within the network will access

the personal and sensitive data of users. Furthermore, valid data controllers who will have full access to the

system's data include myself (for development purposes) and staff members responsible for overseeing the

Students Union elections. More information about the security controls that were implemented to protect

user data can be found in Chapter 6: Security Analysis of this report.

The Survey conducted in the Problem Analysis section of this report also requires the collection of personal

and sensitive data. This data includes student: emails, ethnicity, gender, year of study, course and views on

the existing E-Voting System. Emails were collected to ensure that respondents were students who attend

the University of Surrey. Respondent’s ethnicity and gender, which is considered sensitive data, was collected

 10

to identify any biases in the survey’s results. A justification of why each piece of data in the survey was

collected can be found in this report's Problem Analysis section (under ethical considerations).

Additionally, several things were done to ensure the Survey adhered to the Data Protection Act (2018).

Firstly, before completing the survey students were asked for their consent to use their responses in this

report. Secondly, the data collected was only used in this report (as stated) and respondents were under no

obligation to complete the Survey once they had begun it. Thirdly, student responses were aggregated and

kept anonymous to ensure that their views were kept confidential. Fourthly, the responses were stored

safely in a password protected Microsoft Teams account that can only be accessed by myself. This also means

that the data was kept within the EEA, in line with the Data Protection Act (2018). Lastly, once this project

was completed, the survey responses were deleted to ensure that the data was not kept longer than

necessary.

Informed Consent

In line with the Data Protection Act (2018), focus group and interview participants were asked to sign a

consent form (see appendix A), and their responses were kept anonymous. The Computer Misuse Act (1990)

is not relevant to developing the E-Voting system in this project because there is no 'ethical hacking' or

'accessing of unauthorised material'. However, the Computer Misuse Act (1990) provided a framework in

which security threats to the E-Voting system could be assessed (see Chapter 6: Security Analysis).

To ensure that the E-Voting system is ethical, users must know what personal data is being used by the

system, for example the system stores how they voted in the election. Therefore, before a user can use the E-

Voting system, they must agree to the application's terms of use. Without agreeing to the terms of use, the

user will not be able to use the E-Voting system.

Social Responsibility

The E-Voting system in this project was developed to improve the security of the existing system, the

student's voting experience, and the convenience of running student elections at the University of Surrey. An

E-Voting System with a better voting experience is likely to boost student turnout, making the USSU more

representative of student views. Furthermore, improved security will also increase the trust that students

have in the democratic processes at the USSU. The development of this system also raises some equality

issues.

Due to time constraints, the final version of E-Voting System produced in this project does not cater to

students who have a disability that may inhibit them from using the application. This is a huge problem that

 11

will be addressed in future iterations of the system, because disabled students being unable to vote in USSU

elections violates their human rights. The Evaluation Section outlines ways in which accessibility features

could be implemented in future iterations of the system.

Another issue is that the time gained from using the E-Voting System could make staff members at the

Students Union redundant. Currently, three members of staff at the USSU oversee student elections, the new

E-Voting system could mean a reduction in the human resources required to oversee the election or could

reduce the workload (and salary) of all three stuff members. Alas, the benefits of the E-Voting System's

welfare on students and staff outweighs the possibility of job losses. This is because it is unlikely that staff

members will be made redundant due to adopting a better E-Voting system. A more likely outcome is that

the time gain will allow staff to focus on the Student Union's other priorities. In addition, because the new E-

Voting system will require some technical expertise to manage, staff members may be given extra education

and training, which will improve their human capital.

Conduct

The principles outlined in the BCS's Code of Conduct (BCOC) were used to maintain professionalism

throughout this project. The first principle of the BCOC: make IT for everyone, is demonstrated throughout

this project. This is because the projects main aim is to leverage technology to make the democratic

processes at the USSU better for student and staff. To add, the majority of the research conducted

throughout this project can be from reputable sources (books, journals, research papers and other advanced

material), ensuring the integrity of the information collected. In addition, all sources were referenced

appropriately using IEEE standards.

Learning about Blockchain technology and the other technologies to implement the E-Voting system adheres

to the second principle of the BCOC: show what you know and learn what you don't. In addition, preparation

time prior to the interviews with staff members was done to ensure that USSU staff members' time was not

wasted.

Additionally, the question asked in the Survey and focused groups were respectful and appreciative. Both of

the points align with the BCOC, which states that developers should respect the organisations and individuals

they work with. Last, to ensure that the project was managed professionally, a realistic Gantt chart was

produced, and backup copies of this report were maintained on the cloud (see Project Plan in Chapter 1).

 12

Intellectual Property and Licencing

Intellectual Property in the UK is governed by the Copyright, Designs and Patents Act (1988). Furthermore,

intellectual property has been defined as property that relates to the creation of the mind and can only exist

if it is an artefact. The E-Voting system developed in this project is a new IP. As a result, a decision on

licensing will have to be agreed with the Student Union. The most pragmatic agreement, which was reached

with the USSU, is that in a future iteration of the E-Voting System management of the blockchain nodes used

by the USSU will be handed over. The USSU will also have ownership of the web application produced (free of

charge). However, the background technology's license (the design and architecture of the system) and the

overall blockchain will remain mine. This will allow for work on the E-Voting to continue, with the possibility

of expanding to other universities.

Many things were done to ensure that the agreement with the USSU was fair and ethical. Firstly, the USSU

will be expected to host the web application on a domain they own after this project is completed. This

ensures the full ownership of the web application is given to the USSU, preventing the possibility of the web

application being shut down by myself if a dispute arises. Secondly, the web application will have no

obfuscation, ensuring that other developers can read the code and continue development if the USSU no

longer wishes to work with me. Furthermore, it was decided that the system would be made open source in a

future iteration. This will allow other developers to highlight and fix vulnerabilities.

 13

Chapter 1: Introduction

The main objective of this project is to produce a secure Electronic Voting (E-voting) system that can be used

at student elections at the University of Surrey.

The University of Surrey Student's Union is responsible for the administration of all student elections at the

University of Surrey. Therefore, they will be the primary stakeholder of this project. The second stakeholder

will be students at the University of Surrey, as they will be the primary users of the proposed solution. As a

result, members of staff responsible for the administration of elections at the Students’ Union as well as

students who attend the University of Surrey will be interviewed and surveyed throughout the project to

ensure the solution produced is suitable for the end-users.

To ensure an optimal solution is achieved, this report will discuss and moreover, justify the incorporation of

highly sophisticated technologies, such as blockchain that can be used in the proposed solution. In addition,

analysis of the Students’ Union’s existing E-voting system will be conducted in order to find security flaws and

features that can be improved. Once stakeholders are satisfied with the proposed solution, a requirements

specification of a tangible technical solution will be proposed to address issues discovered within the existing

E-voting system. The proposed solution will then be designed, implemented and evaluated against the

project’s aims and objectives.

 14

1.1 Project Overview
This chapter will provide background information into the projects two stakeholders: University of Surrey

students and the University of Surrey's Students’ Union (USSU). This section will also provide a brief

explanation of the types of student elections held by the USSU and how they are conducted. Lastly, the

project's aims, objectives and success criteria will also be specified in this chapter.

1.2 Background
Most UK universities will have an associated Students' Union. Most Student Unions are registered to the UK

charity commission (the UK's charity regulator) and must comply with its rules and regulations. Similar to

other Students’ Union in the UK, the University of Surrey's Students' Union (also referred to as USSU) is a

student-led charitable organisation.

The USSU exist to represent the interests of students at the University of Surrey to Senior University

management. The USSU is led by five full-time student Sabbatical Officers, who are elected by Surrey

University students each year. The annual election, known as Surrey Decides, occurs every year in the month

of February.

The elected full-time positions include a President

and four Vice-Presidents. Within the USSU, there

exists four different zones: voice, activity, support

and community. Each zone focuses on a different

aspect of student life and is overseen by one of

the four elected Vice-Presidents. The USSU also

has 21 elected student part-time officers (PTOs),

five in each zone. One PTO is the Union Chair who

is responsible for holding all elected officers to

account.

Figure 1: The University of Surrey Students' Union
Building

 15

Figure 2: Structure of Surrey Students' Union and Elected Officers for 2020/21

The Voice Zone's primary responsibility is to uphold the election processes of student elections at the

University. Therefore, attempts will be made to regularly engage the VP Voice and Voice Zone Committee

members during the gathering of requirements, design, development and testing of the proposed solution.

Feedback from other officers and students will also be welcomed and sought out.

The USSU also employ non-elected full-time staff members. The staff members of relevance to this project

include the Digital Experience Manager (Alex Harden), who is responsible for the day-to-day operations of

the USSU, and the Voice Zone manager (Katherine Phillips), who is responsible for overseeing the democratic

processes of the USSU. Feedback from the Digital Experience Manager and Voice Zone manager will be

sought out and welcomed throughout this project.

The USSU is also responsible for the running of Course Representative elections and society AGMs. Course

Representative elections are held during the start of the academic year; thus, it would be impractical to test

the proposed solution during these elections.

 16

Society AGMs are the formal elections that take place within a university society. Society AGMs are held from

the start of April till May hence, a working version of the proposed solution could be trialled during these

elections. The societies that could be interested in trialling the proposed solution include ACS, HackSurrey,

WOKESurrey and CompSoc. The current committee of these societies and other societies that wish to use the

proposed solution to run their AGM will be consulted throughout the development of the solution.

1.3 Project Motivation
In recent years student engagement and satisfaction at the University of Surrey has fallen significantly.

The Office for Student's, National Student Survey (NSS), a survey completed by students in their final year of

University, shows that the University of Surrey is now ranked 126, down from rank 20 in 2016. In four years,

the University of Surrey has fallen 106 places. A breakdown of the 2020 NSS results shows that 42.37% of

Surrey students believe the Students' Union does not effectively represent student academic interests [1].

Turnout for Surrey Decides, the annual Student Union election, has also fallen significantly in recent years. In

the 2020 Surrey Decides election, the most recent election, only 8% of Surrey students voted [2]. Student

elections held in the same year at the London School of Economics and Royal Holloway had a turnout of 16%

[3] and 30.6% [4] respectively. This data shows that at other similar UK Universities, turnout in student

elections is more than double when compared to recent elections held at the University of Surrey. Robust

voter turnout is fundamental to a healthy democracy, as low turnout is usually attributed to political

disengagement and the belief that voting for one candidate/party or another will do little [5]. Therefore,

voting in Surrey Decides is a crucial indicator of student engagement with the Students’ Union, because

students who are engaged with the USSU will want to influence its governance.

Many reasons could explain why student turnout and engagement with the USSU has fallen significantly. The

primary reason that relates to this project is that students do not trust or have faith in the current election

process. Evidence of this exists in the pulse survey conducted by Alterline on behalf of the USSU between

2016 to 2020. The pulse survey showed that 68% of students do not think they 'can influence decisions made

by the SU' [6]. The same survey also revealed that 68% of students do not know 'who the USSU Sabbatical

Officer team are' [6]. The fact that the majority of students do not know who the Sabbatical Officers are

explains why 42.37% [1] of Surrey students believe the USSU does not effectively represent student interests.

 17

Figure 3: Data from the Pulse Report 2019/20 showing student apathy

Figure 4: Data from the Pulse Report 2019/20 showing lack of student awareness and engagement

Therefore, as an individual who was an elected member of the USSU in 2018, the main motivation behind

this project is to improve the democratic processes, outlined above, at the University of Surrey. The hope is

that by improving these democratic processes, the USSU will restore the trust of students, leading to a better

NSS score for the University of Surrey. Additionally, as this is a software engineering project the secondary

motivation, is to acquire key software development and programming skills that can be used in the real

world.

1.4 Project Aims & Objectives
The primary aim of this project is to produce a new secure e-voting system that can be used to conduct AGM

elections at the University of Surrey.

The project objectives that will allow me to achieve this aim are as follows:

• Explore and understand the attributes and vulnerabilities of an effective E-Voting system.

 18

• Review technologies and frameworks that can be used to implement an E-Voting system that

functions on IOS and Android devices.

• Gather Requirements through the use of stakeholder interviews, surveys and focus groups.

• Analyse and evaluate the current E-Voting system used by the Student Union to conduct AGMs.

• Conduct a risk assessment to identify threats to the proposed E-Voting system and propose controls

to mitigate them.

• Iteratively design and implement a new E-Voting system that can be used on IOS and Android.

• Perform unit, functional, non-functional, cross device and user acceptance testing to ensure that the

system functions as expected.

• Execute beta testing, by trialling the application in one or more university election to demonstrate

the utility of the new system.

• Gather feedback and recommendations from Beta users, that will be implemented in future

iterations of the application.

1.5 Success Criteria
The success of this project will be evaluated based on the project’s aims and objectives outlined above.

Additionally, the effectiveness of the produced E-Voting system will be assessed using the attributes that are

considered paramount for an E-Voting system to have. These attributes are explained in Section: 2.3 What

makes a good E-Voting system? Furthermore, the project will be considered a success if the produced E-

Voting system is able to fulfil the majority of these attributes.

1.6 Methodology
A software development lifecycle (SDLC) refers to a methodology with clearly defined processes for creating

high-quality software [7]. Every SDLC consists of the following stages:

• Software specification, where customers and engineers define the software that is to be produced and

the constraints on its operation [8].

• Software development, where the software is designed and programmed [8].

• Software validation, where the software is checked to ensure that it is what the customer requires [8].

• Software evolution, where the software is modified to reflect changing customer and market

requirements [8].

It is important that an appropriate SDLC is chosen for the development of the proposed system. This will

ensure a well-structured flow of phases that allow me to quickly produce high-quality software which is well-

tested and usable. The two most notable SDLCs are, the waterfall model and agile development.

 19

The waterfall model is split into the following phases:

Requirement’s analysis – in this stage, the requirements for the system are identified and a requirement

specification is produced.

Design – in this stage, how the system will function will be layout. Design diagrams and UI mock-ups are

often produced during this stage.

Implementation and Testing – in this stage the system is developed and tested. Testing documentation is

often used to keep track of the working functionalities.

Figure 5: The waterfall model

The advantage of using the waterfall model is that its linear step-by-step well-defined phases make it simple

to follow. However, the main disadvantage of the waterfall model is that it is rigid [9]. If a new requirement is

recommended by stakeholders in the development phase it will not be possible to add the new feature to the

requirement specification. This is because a change in the requirement specification will also require a

change in the design documentation of the proposed system. This inflexibility to make changes to

requirements in an ad-hoc manor will mean that stakeholder feedback will be limited.

Agile development (also known as incremental development) is based on the idea of developing an initial

implementation, getting feedback from users and others, and evolving the software through several versions

until the required system has been developed [10]. An agile approach to incremental development means

that early increments are identified but the development of later increments depends on stakeholder

feedback.

 20

Figure 6: Incremental development

The main advantage of incremental development is it will reduce the amount of documentation that has to

be redone if new requirements are recommended by stakeholders [10]. Additionally, using the agile model

will allow for stakeholder feedback to be incorporated into the proposed system at the next iteration of the

application. To add on, the agile approach to development has become widely used in the software

development industry, thus using it in this project will facilitate the development of skills that can be used in

the real world.

 21

1.6.1 Chosen Methodology

On balance, the best SDLC for this project is the agile approach. Although it is a more complex mythology, as

stated by Ian Sommerville, “agile development methods are better than the waterfall for systems whose

requirements are likely to change during the development process” [10]. As stated previously the

development of the proposed system will be influenced heavily by stakeholder feedback. Therefore, using

the agile approach will ensure that stakeholder feedback is incorporated into the application during the

development process. In addition, the time constraints of the project mean that the core functionalities can

be implemented in the first iterations of the system. Additionally, desirable but non-essential features can be

implemented in later iterations of the system if time permits.

1.7 Project Plan
This project will span from the 21/09/20 (the start of the academic year) until the 18/05/21 (the deadline of

the project). All the tasks and milestones of this project have been mapped out in the Gantt chart displayed

in Appendix B. However, it is important to note that the timeframes and durations outlined in the Gantt

chart are estimations. Therefore, while an effort will be made to stick to these dates, the actual completion

dates are likely to deviate from the intended completion dates.

1.8 Structure of report
The project report will be split into the following chapters:

Chapter 2: Research (Literature and Technology Review) – This section includes a summary, analysis and

evaluation of all the initial research conducted in this report. The first half of the chapter, the literature

review, focuses on E-Voting and Blockchain literature. The latter half, the technology review focuses on the

technologies and frameworks that can be used to implemented the E-Voting System.

Chapter 3: Problem Analysis – This chapter will provide insight into the problems facing the USSU and Surrey

Students when using the current E-Voting system. This will be done through stakeholder interviews, focus

groups and a survey. Additionally, an evaluation of the system currently used by the USSU will be conducted.

Chapter 4: Requirements – This chapter will outline what the final version of the E-Voting system produced

in this project is expected to do.

 22

Chapter 5: Design – This chapter will contain the design documentation that will describe how the final

version of the E-Voting System produced in this project will function.

Chapter 6: Security Analysis – This chapter will present the risk assessment conducted on the E-Voting

system as well as the necessary security controls that will be implemented to ensure the E-Voting system is

not susceptible to attacks.

Chapter 7: Implementation – This chapter will provide an overview of the code base of the application and

briefly discuss how the application was deployed.

Chapter 8: System Testing – This chapter will document the results from unit, security, functional, cross

device and user acceptance tests. As part of user acceptance testing the outcomes and results of the E-Voting

application on a real AGM election, and will discuss the improvements and recommendations made by

participants.

Chapter 9: Evaluation & Conclusion – This section will evaluate the overall success of the project based on

the project objectives outlined above. Future enhancements to the system will also be discussed in this

section. Finally, this section will include a conclusion summarising this project.

 23

Chapter 2: Research

This chapter contains a summary, analysis and evaluation of all the research conducted in this project. The

research in this chapter is split into two sections, the Literature Review and the Technology Review. The

literature review discusses what an E-Voting system is, the security problems associated with E-Voting, what

makes a sound E-Voting System, the types of E-Voting Systems, and permissionless and permissioned

blockchains. The Technology Review discusses the technologies and frameworks that can be used to develop

the new E-Voting System. Throughout this chapter, justifications are provided when an approach is selected

over an alternative.

Literature Review

In this section, relevant E-Voting literature will be analysed and evaluated in order to select the best

approach for the proposed E-Voting System. Additionally, when one approach is chosen over another, a

suitable justification will be provided.

2.1 What is E-voting?
From hand raising to physically moving to one side of an auditorium, since the inception of democracy, voting

has been conducted in a multitude of ways. Today, voting via a secret ballot is the most common method of

voting. This method of voting guarantees the two pillars of a free and fair election, anonymity and trust [11].

Anonymity ensures that an individual's vote cannot be discovered by someone else. This prevents individuals

from being coerced to vote in a particular way. Further, the UK's voting system upholds anonymity by

discarding ballots that contain anything that identifies the caster, such as a signature. Additionally, the

banning of cameras and phones in polling stations prevents people from being able to prove how they voted.

The second pillar, trust, ensure that people have faith in the voting process and will respect the outcome

[12]. For there to be trust, the voting process must be transparent and understood by everyone. In the UK,

trust in the voting process is upheld through the use of, counting observers from both opposing parties, and

the electoral commission – a transparent and impartial body that oversees UK elections.

An Electronic voting (E-voting) system is a voting system in which the election data is recorded, stored and

processed primarily as digital information [13]. Instead of crossing an 'X' on a piece of paper, an electronic

voting machine, home computer, mobile device or telephone can be used to cast a vote. Compared to

conventional voting systems, E-Voting is quicker, less expensive and generally more convenient for voters

and authorities. Further, there are two types of E-Voting Systems:

 24

• Voting Machines – This type of voting is similar to ballot voting in that it requires voters to go to a

polling station to cast their vote. However, instead of crossing an X on a piece of paper, voters push a

button on a voting machine [13].

• I-Voting – This type of voting allows people to vote remotely using an application on a device that is

connected to the internet [13], as shown in Figure 7. This is the kind of System that will be developed

in this project.

Figure 7: High-level view of an I-Voting System

In line with the guidance given by The Organization for the Advancement of Structured Information

Standards (OASOS), the process of E-Voting can be split into three sequential phases.

The Pre-Voting phase – includes the candidate nomination process, in which candidates put themselves

forward to stand for the election [14]. The nomination process can take many forms, for example, USSU

bylaws state that 'candidates require the nomination of 5 other students' to stand in the election [15].

Candidates who fail to do this will not appear on the ballot. Additionally, this phase also includes the Voter

Registration process, in which eligible individuals will have to register to vote before polling day [14]. In line

with USSU bylaws, all Surrey University students are automatically registered to vote [15]. At the end of this

phase, there should be a list of all eligible candidates and voters.

The Voting phase – during this phase, all eligible voters will be able to vote for eligible candidates, using an

electronic channel such as a smartphone [14]. The new E-Voting system will allow students to vote using

their smartphone or computer.

 25

The Post-Voting phase – this is the most important phase as it covers counting the votes and publishing the

results [14]. The way in which votes are counted must be clear and transparent. The E-Voting system should

also allow recounting so that administrators can reproduce the same results if the election results are

challenged. In addition, this phase also includes an analysis of the election in the form of a report. This

analysis can range from voter turnout to a transcript detailing how votes were counted (this can be especially

crucial when complex voting systems like STV are used).

2.2 The security problems with E-Voting

While E-Voting can improve the efficiency and convenience of an election, there many security problems that

arise when using an E-Voting system:

Denial of Service Attack (DoS) – The purpose of this attack is to overwhelm the system by flooding the E-

Voting system with packets until it can no longer accept legitimate connections [16]. This type of attack could

have a particularly high impact, given the short timescales of USSU elections (3 days) [17]. It is unlikely that

this attack will be effectively carried out by a student with a stake in the election. This is because, denial of

service attack requires advance knowledge of networks and specialist software, which most students do not

possess. Having said this, the Student Union has 17,000 eligible voters, and while it is highly unlikely that

students will all vote at the same time, the E-voting system should be able to handle a substantial volume of

requests.

Viruses & Worms – Viruses and Worms are programs that can reproduce and cause harm to computers. The

difference between them is that worms do not need to change existing programs to spread, while viruses do

[18]. If a student has a virus or worm on their device, it should not be possible for them to overwrite files and

change election results. Indeed, the virus might change the vote of the individual student but the overall

integrity of the election should be protected. According to a study conducted by Sophos, 48% of UK

organisations were hit by a malicious attack in 2020 [19], so ensuring that security controls are put in place to

counter this problem is paramount.

Internal Attacks – Attacks by people with privileged access to the System, for example, system developers or

system administrators could alter votes [17]. But it is safe to assume that the Students' Unions election

officer would not be able to favour one candidate over another. This is due to, the election officer being

accountable to the democracy committee which ensures that the power election officer is checked and

balanced. Additionally, the Students' Union will have multiple administrators with privileged access, making

 26

this kind of attack more difficult. Lastly, the System could restrict administrators to change votes or allocate

votes to candidates which will significantly reduce their ability to influence the election results.

Another problem with using an E-voting system is that trust and anonymity cannot be guaranteed. E-Voting

systems are complex, which means that stakeholders in an election may struggle to trust the integrity of the

software being used [12]. One solution to this problem is to publish an anonymised list of how people voted.

Each voter would be given a unique ID so that they can confirm that their vote was counted correctly. The

issue with this is that in an attempt to make the system more trustworthy, anonymity is sacrificed. For

example, a coercer could demand an individual's unique ID in order to check that they voted in a particular

way, breaking the anonymity of votes.

While these security flaws present valid threats to E-Voting systems, the E-Voting system proposed in this

project is operating in a low threat environment. This is because unlike national elections, Students' Union

elections are not high stake. Furthermore, it is unlikely that professional hackers will target a University of

Surrey election; therefore, we can create the E-Voting system on the bases that all attacks, if any, will be low

level. This does not mean security will be ignored before development begins, a security analysis of the

proposed design will be carried out, and the necessary controls will be implemented.

2.3 What makes a good E-Voting system?

There have been a number of proposals for electronic voting systems. Across all these proposals there is a set

of desirable attributes that make an E-Voting system secure and effective. These attributes include:

Accuracy – For an E-Voting system to be considered accurate, three conditions must be met. Firstly, it must

not be possible to alter or discard a vote during its transmission or during the counting of votes. Secondly, it

must be impossible for invalid votes to be counted [20]. Thirdly, votes from ineligible voters should not be

counted [20]. This is the most important attribute of an E-Voting system, without accuracy, the election

results could be brought into question.

Verifiability – For an E-Voting system to be considered verifiable voters should be able to independently

check that their vote was recorded correctly [20]. This can be done by publishing an anonymised list of how

people voted so that voters can confirm that their vote was counted correctly. Additionally, administrators

should also be able to check that the System has not been compromised, this can be achieved through the

use of a checksum.

 27

Democracy – An E-Voting system is considered democratic if it permits only eligible voters to vote, only once

[20]. This is achieved through a combination of verifiability and accuracy. Further, the System could

authenticate students by using Microsoft's Office 365 login (their outlook login) which uses two-step

verification.

Privacy – An E-Voting system upholds privacy if a third party cannot determine how an individual voted in the

election [21]. This prevents voter coercion as individuals have no way of proving how they voted to the

coercer. While this is an important attribute, as mentioned previously, it is impossible to have privacy and

total verifiability. This is because, for voters to be able to verify their vote, they must be able to check how

they voted, which could be shown to the coercer. Having said this, security controls can be implemented to

reduce the possibility of coercion. One example is to prevent users from screenshotting their phones while

using the E-Voting system.

Convenience – An E-Voting system is considered to be convenient if it allows users to quickly and easily vote,

with minimal technical skill [20]. A user-friendly and intuitive user Interface will ensure this attribute can be

achieved.

Flexibility – For flexibility to be upheld, the administrator should be able to change election rules such as

eligible voters, a student's ability to change their vote, the start and end date of elections, and the electoral

System being used, i.e., switching between FPTP and STV.

Mobility – An E-Voting system is considered mobile if there is no restriction on the location from which an

eligible voter can vote [13]. This is important as the University of Surrey has 10,000 students that live off-

campus, therefore to ensure that every student has the opportunity to vote the proposed System should

allow all students with an internet connection to cast a vote.

Reliability – An E-Voting system is considered reliable if it continuously performs its function as expected

[13]. More specifically the E-Voting system should allow all eligible voters to vote for the duration of the

election. Further, the creation of backups could also ensure that important data isn't lost during the election.

Social Acceptance – An E-Voting system is considered to have social acceptance if it is perceived as being an

effective system by the majority of students [22]. Overlooking this attribute will have dire consequences. This

 28

is because If the majority of students do not like or trust the E-Voting system, they will not use it. For this

reason, student feedback will be sought throughout the development of the System.

2.3.1 Evaluation

Developing an E-Voting system in such a short time frame means that attributes will have to be prioritised,

with the goal of implementing the most important attributes first. It is, therefore, necessary to ranking the

attributes above from most important to least important. The hope is that the E-Voting system produced will

contain all the attributes listed above. However, the attributes ranked higher will be implemented in earlier

sprints. Below are the ranks for each attribute along with a justification for the rank:

1. Democracy (accuracy and verifiability) – This is the most important attribute and is a combination of

accuracy and verifiability. This is because, an E-Voting system is simply a tool that makes democratic

elections easier for voters to vote and overseers to manage. Furthermore, if the System cannot

accurately count the votes cast, and produce the correct election results, the System is useless.

Another reason why this attribute is important is because, if the System does not allow for students

to confirm how their vote was counted, trust in the System will fall, reducing turnout. The final

reason why this is an important attribute is because, nobody will stand or vote in an election that is

not fair. Furthermore, if an election used an E-Voting system that allowed some individuals to vote

multiple times, the election would not be considered fair.

2. Reliability – This is ranked second because, without reliability, the System could stop functioning

during the election. The E-Voting system going down could prevent students from voting or

registering as a candidate before the deadline. This would have devastating consequences on USSU

elections as a student only have a short time window to vote (3 days).

3. Semi-Privacy – As mention previously, privacy and verifiability cannot simultaneously be achieved in

an E-Voting System. Therefore, the proposed E-Voting System will have full verifiability and semi-

privacy. Semi-Privacy is defined as an E-Voting system having security controls that reduce the

likelihood of coercion. Ranking third, this is an important attribute because to get a truly authentic

election result, students must be able to conceal how they voted.

4. Mobility – This is ranked fourth because if the system didn’t allow students outside of campus to

vote, over 10,000 students that commute and live off-campus would not have the same equal

opportunity to vote.

5. Convenience – This is ranked fifth because students will be more likely to use the E-Voting system if

they like its UI, and if the voting process is as easy as possible. The reason why this isn't ranked higher

 29

is the attributes above focus on the functionality of the E-Voting System. Further, if the E-Voting

System does not function as indented, nobody will use it irrespective of how good the UI is.

6. Flexibility – This is an attribute that would make the E-Voting System more convenient for

administers who oversee the election. However, it is a desirable attribute, the priority is to develop a

system that allows students to vote in student elections using the standard USSU election rules.

Giving the E-Voting System more flexibility in the event of rule changes, will be implemented in later

sprints of this project, hence its low rank.

7. Social Acceptance – While it is important that students accept the E-Voting system, this attribute was

given the lowest rank because if the System meets all the attributes above it will be perceived as an

effective system by the majority of students.

2.4 Types of E-Voting System

There are a multitude of architectures and technologies that can be used to create an effective E-Voting

system. The two most prominent are Blockchain and a centralised database that uses cryptographic

techniques. Both of these approaches have advantages and disadvantages. Further, a decision on which

approach will be selected for the proposed solution will be determined by weighing up and evaluating the

pros and cons of both technologies against the objectives of the project and application.

2.4.1 Centralised Database with Cryptographic Techniques

A centralised database is a single location in which information is stored. It can be accessed through the

internet or a private LAN connection. Many organisations use this architecture to store their information, this

includes, colleges, companies and banks.

There are a multitude of cryptographic techniques that are used to store and share data in a database. These

cryptographic techniques prevent adversaries from being able to decipher messages in transmission. They

also stop adversaries from getting useful information if they successfully hack into the database.

One of these techniques is encryption which is the process of translating data from understandable plaintext,

to ciphertext. This cyphertext cannot be understood by anyone, and it can only be translated back into

plaintext with the secret key. There are many types of encryption algorithms each providing their own level

of security; however Advanced Encryption Standard (AES) is the algorithm trusted as the standard by the US

government [23].

 30

Another cryptographic technique is hashing. A hash is the result of a one-way mathematical hash function

that takes in a single value. A hash function is generally considered secure when it is collision resistant

meaning that it is computationally infeasible to find 2 values that produce the same hash. SHA-3 is the

standard currently specified by Federal Information Processing Standards (FIPS) [23]. Lastly cryptographic

techniques also include security protocols used to send messages over a communication channel.

These protocols provide a high-level of security across a channel if certain conditions are met. Furthermore,

these protocols include: Mixnets, Blind signature, Homomorphic secret sharing schemes and Diffie-Hellman

Key Exchange with RSA.

2.4.1.1 Application

The best way to demonstrate how a centralised Database with cryptographic techniques can be used to

produce a secure E-Voting System is to discuss an example of such a system. The article A Light-Weight e-

Voting System with Distributed Trust produced by Aneta Zwierko and Zbigniew Kotulski [24] is a practical

example of how this kind of E-Voting System can be implemented.

Below is a high-level overview of the E-Voting system proposed in the article.

The System is comprised of five parties:

The trusted authority – who is responsible for creating a list of users who are eligible to participate in the

election and for authentication data that allows them later to vote. This is denoted as TA.

The Mix – who is responsible for protect the voters' privacy. This is denoted as TAO.

The Counter – who is responsible for collecting the votes, counting all valid votes and then publishing the

votes for verification. This is denoted as AC.

The Voters (users) – the individuals who are eligible to vote in the election. The number of voters is denoted

as Nu.

The voting channel – this is the in which user can use to vote in the election, for example a mobile web

application. This is denoted as AV.

The basic steps of the election are:

• TA creates the set of credentials and the list of registered users and sends them to the mix

agent AM.

• For each voter requesting credentials, the mix agent AM creating credentials from data

received from T A. First, it checks if a user has the right to vote.

 31

• The user sends its vote along with credentials to the counter agent AC: the counter checks

the credentials with TA and if they are proper the counteragent AC sums up the vote,

publishing a proof attached to the vote.

The scheme makes use of two cryptographic primitives: the secure secret-sharing scheme and the Merkle's

puzzles. Details of how these cryptographic primitives function as well as a formal specification for this E-

Voting scheme can be found in section 3 and section 5 of the article respectfully [24].

2.4.1.2 Evaluation

Centralised databases are the most common form of storage in today's world. However, as the volume of

transactions and data has increased the integrity of these centralised systems have been brought into

question. As well as having a single point of failure centralised databases rely on an authority to maintain a

record of all transactions. The first problem with this is that when multiple records of a transaction are

recorded, there is no way of ensuring that all parties have recorded the transaction correctly. For example,

when Bear Stearns investment bank failed in 2008 and was completely acquired by JP Morgan Chase, the

number of shares offered to the acquirer was larger than the shares out- standing in the books of Bear

Stearns [25]. It was not possible to clarify the accounting errors and JP Morgan Chase had to bear the damage

from excess (digital) shares [25]. The problem here is that a single point of failure in a centralised database

means that an adversary can launch DoS attacks, which will prevent users from being able to communicate

with the database. This could have a huge impact on the election as voting is only open for a limited time.

The second problem is that a centralised database system gives a small number of institutions a significant

amount of power, which can lead to corruption [26]. For example, in the UK Banks have the power to

temporarily freeze bank accounts and hand over customer transactions on the behest of the authorities.

Additionally, the proposed E-Voting system in A Light-Weight e-Voting System with Distributed Trust [24] also

place a significant amount of trust in the hand of a few authorities. For the System to function we assume

that, the trusted authority, the mix, and the counter reliably carry out their responsibilities and that they do

not collude to influence the election results. In addition to this no cryptographic protocol is full proof if the

administrator does not keep important credential secret. For example, if an adversary was able to gain access

to an administrator's password, they would be able to compromise the election. This means that administer

will be required to have a level of information security training in order to use the E-Voting system securely.

2.4.2 Blockchain

There are two types of blockchain: permissionless and permissioned, their differences are discussed in the

proceeding section. In order to effectively compare blockchain with a centralised database no distinction will

be made between the two types.

 32

Blockchain is a distributed and immutable ledger that allows tangible and intangible assets to be tracked [26,

27]. The distributed nature of blockchain means that every node in a network has a record of every

transaction [27]. The immutable attribute of blockchain is achieved through the use of connected blocks.

Each block consists of: all the transactions that occurred when the block was created, a hash which is a

unique alphanumerical string, and the hash of the previous block in the chain. What makes this chain of

connected blocks tamper resistant is that the hash of a block is determined by the block's transactions.

Therefore, if someone was to change the transactions of a block it's hash would also change. This would

make the next block which contains the previous hash, invalid.

Figure 8: Example of blocks in a Blockchain

2.4.2.1 Advantages

Using Blockchain for E-Voting has many advantages. Firstly, because of the complex cryptographic proofs

among nodes in the network transactions on a blockchain can be trusted [27]. This is especially useful in E-

Voting as the System can be sure that a vote has come from a valid node. Secondly, Blockchains are

immutable meaning it is computationally infeasible to change or delete records made [26]. This allows for

the election process to be audited and for the election results to be recomputed if there is a dispute. Thirdly,

the decentralised nature of the blockchain means that there is no single point of failure that adversaries can

attack [25]. Further, this removes the need to trust a single authority, instead students can have faith in a

transparent system. Lastly, blockchain allows for every node in the network to use a unique ID as opposed to

their real name. This keeps people's transactions anonymous which can be especially useful in an E-Voting

system as the secrecy of ballots casts is paramount [25].

 33

2.4.2.2 Evaluation

One of the potential vulnerabilities of Blockchain is that its performance can be significantly reduced when

more nodes become active [28]. An example of this can be seen with Bitcoin which saw a significant

reduction in performance when its price increased to $20,000 in December 2017. This could be a huge issue

for an E-Voting system if multiple users are trying to vote at the same time. In addition, because Blockchain is

a new and complex architecture, administrators managing the blockchain will need to have a good technical

skill [29]. Furthermore, without effective governance of the blockchain administers will be unable to properly

oversee the election process, which could bring the integrity of the election into question. Additionally,

irrespective of a Blockchain's data integrity a blockchain based E-Voting system is still susceptible to viruses,

worms and internal attacks. Lastly, another issue with Blockchain is its close association with

cryptocurrencies. It is no secret that cryptocurrencies have revolutionised the black-market as they allow for

untraceable transactions to be carried out. Therefore, some individuals may not trust the technology as it is

closely associated with scams and illegal activity. This is a huge problem because as stated previously without

social acceptance of the technology being used, users will have no faith in the E-Voting system, which will

lead to lower turnout.

2.4.3 Selecting an Approach - Blockchain

After assessing the pros and cons of a Blockchain approach against a Centralised Database with cryptographic

techniques, Blockchain will be used to develop the E-Voting System in this project. This is because the

immutability and anonymity guaranteed by a blockchain will ensure that votes cannot be changed or traced

once cast. Additionally, because blockchain uses a distributed network there is no single point of failure that

an adversary can exploit. Along with this, because blockchain does not rely on a few central authorities, the

possibility of collusion is significantly reduced. Lastly, Blockchain is a new and innovative technology which

will allow for the acquisition of new skills one of the success criteria for this project.

2.5 Permissionless and Permission Blockchain
There are two types of Blockchain, permissionless and permissioned, which based have their own

characteristics and different use cases.

Permissionless and Permissioned blockchains also differ on the consensus algorithm they use. The distributed

nature of information on the network means that Blockchain relies on a consensus algorithm to ensure an

 34

agreement is reached on the state of data among distributed nodes. One of the properties that consensus

algorithms must achieve is Byzantine Fault Tolerance [30].

To explain what the Byzantine Fault Tolerance is the Byzantine general's problem must be understood. The

Byzantine general's problem was first articulated by Lamport, Shostak and Pease in 1982 [30]. The best way

to understand the problem is to imagine a Byzantine army surrounding a city. The army is divided into groups

each lead by a general. Furthermore, for an attack on the city to be successful all generals must agree to

attack at the same time. However, generals can only communicate by sending messages to each other. This

problem lies in the fact that generals can act as traitors meaning they can send false messages to other

generals in order to prevent consensus. Additionally, it is possible for messages to get lost or corrupted

further adding to the problem.

Furthermore, it is impossible to solve the Byzantine general's problem when 1/3 of the generals are traitors.

In Figure 9, Lieutenant 2 acts as a traitor sending a false retreat message to Lieutenant 1. Similarly, in Figure

2, the Commander acts as a traitor and sends an attack message to Lieutenant 1 and a retreat message to

Lieutenant 2. In both scenarios Lieutenant 1 will not be able to determine which general is the traitor and

thus will not know whether to attack or retreat. Therefore, a consensus algorithm can only provide Byzantine

Fault Tolerance to a distributed network if the number of potential traitor generals (malicious nodes) is less

than 1/3.

Figure 9: Lieutenant 2 is the traitor

 35

Figure 10: Commander is the traitor

2.5.1 Permissionless Blockchains

Permissionless Blockchain allows for anyone to join and leave the network as a reader or writer at any time

[26]. There is no central entity which controls the membership of the blockchain. This means that at any time

someone can see a list of all transactions that occurred on the Blockchain. The two most popular

implementations of a permissionless blockchain is Bitcoin and Ethereum.

Permissionless blockchains use the following two consensus algorithms:

Proof of Work (PoW) – Proof of work was first presented as an idea to combat email spam by Dwork and

Naor in 1993 [31]. The proof of work algorithm requires nodes to function as a prover or verifier. All nodes

will attempt to solve a resource-intensive computational puzzle, once a node has found a correct solution the

other nodes that will verify the solution [32]. The node that solves the puzzle correctly will broadcast their

new block to the network. It is important to note that the verification process undertaken by the losing nodes

requires significantly less computational power than solving the puzzle. The idea behind PoW is that a

successful attack would require a lot of computational power and time to solve the puzzle. Further, since the

incurred cost is greater than the potential rewards attacking the network is inefficient and, in many cases,

infeasible. PoW is used as the consensus algorithm in Bitcoin where miners act as provers and verifiers.

Furthermore, under Bitcoin there is an incentive to become a miner as successful miners are rewarded with

Bitcoins [32].

Proof of Stake (PoS) – Proof of Stake was first presented in the Bitcointalk forum 2011 [33], to deal with the

energy consumption issues in PoW. PoS algorithm uses a pseudorandom election process to select a node as

a validator, this node will then validate the next block in the blockchain [32]. In order to be eligible to become

 36

a validator, the node must own a certain number of assets in the blockchain [32]. In other words, the bigger

the stake of an individual in the blockchain the higher the chances that they will be selected as a validator. To

mitigate the algorithm only favouring the wealthy other factors such as, randomness and the age of coins are

used. As a reward for validating the next block the node receives a transaction fee associated with adding the

block. This consensus algorithm provides security because it disproportionately selects individuals with a high

stake in the network to act as validators. Further, if the network detects a fraudulent transaction the node

that verified the block will be penalised financially and will lose their right to be a verifier in the future. The

only way for an attacker to approve fraudulent transactions is for them to own 51% of the assets being

traded on the blockchain, something that is often infeasible. Peercoin, a cryptocurrency, was the first

implementation of PoS [34].

2.5.2 Permissioned

This type of Blockchain only allows an authorise group of readers and writers to join the network [26]. Under

this implementation a central entity grants rights to allow individuals to read and/or write to the Blockchain.

The most widely known instance of permissioned blockchains are Hyperledger Fabric and R2 Corda.

Permissioned Blockchains use the following consensus algorithms:

Practical Byzantine Fault Tolerance (pBFT)

The pBFT was first proposed by, Miguel Castro and Barbara Liskov, to deal with the Byzantine general's

problem. Practical Byzantine Fault Tolerance works by ordering nodes in the System sequentially, with one

node acting as the leader and the others acting as backup nodes. All nodes in the System communicate with

each other in hope that all honest nodes will come to an agreement of the state of the System using majority

rule. This only works if malicious nodes do not equal or exceed 1/3 of all nodes in the System. Further, it can

be said that as the number of nodes in the pBFT increases so does the security.

2.5.3 Evaluation

Permissionless Blockchains are true decentralised as anyone is able to access the Blockchain. This means that

it is a fully transparent network that cannot be controlled by a single authority. USSU elections would benefit

greatly from this transparency as students will have more faith in a system that is not centrally controlled.

However, because by default everyone has access to the network extra configuration work will have to be

dedicated to ensuring only eligible voters can vote in the election. Additionally, the open nature of

permissionless blockchain make them highly secure, as there is a positive correlation between the number of

 37

nodes and the security of a blockchain. While this is a positive attribute USSU elections will not benefit

greatly from having a more secure network, as the E-Voting system will be operating in a low threat

environment. Another, drawback of a permissionless blockchain is that its open nature makes the overall

speed and performance of the System is slower. Slow performance will diminish the overall voting experience

of students, which could reduce voting turnout in USSU elections.

In addition to this the, permissionless system uses proof of work and proof of stake consensus algorithms

which are impractical for an E-Voting System. Firstly, because each student is only allowed to vote once,

there is no incentive, in the form of a reward, for students to act as a prover. Further, without provers in the

network the blockchain will fail to function as indented. The proof of stake algorithm is equally impractical.

This is because, every voter has an equal stake in the election represented in the form of a vote, which means

the algorithms pseudorandom election will fail to elect a node with a significant stake in the election.

 Nodes in a Permissioned Blockchain must be given access by the network administrators before they can

make transactions on the Blockchain. This authentication process can take many forms, for example, nodes

may have to undergo an authentication process before they can make transactions on the Blockchain. If a

permissioned Blockchain was adopted, only allowing University of Surrey students to vote would be straight

forward, saving development time. Additionally, because only a limited number of people can access the

network permissioned blockchains are much faster and energy efficient then permissionless blockchains. This

can make voting for students quicker, making the voting process more convenient which will increase

turnout. The drawback of permissioned Blockchains is that they are governed by a central actor, which

increases the risk of collusion. Having said this, other security controls such as having multiple actors who

oversee the network can solve this problem. Another issue with permissioned blockchains is that they are

less transparent then permissionless blockchains, which could reduce the trust students have in the election.

This issue can be mitigated by publishing an anonymised list of how people voted after the election.

 Permissionless Blockchain Permissioned Blockchain

Throughput Low High

Latency Slow Medium

Number of Readers High Medium

Number of Writers High Low

Centrally managed No Yes

 38

On balance, using a permissioned Blockchain is more suitable for this project. This is because as outlined

above many of the issues with a permissioned Blockchain can be mitigated. Additionally, the consensus

algorithms that permissionless Blockchains are not fit for purpose. Lastly, the low threat environment that

the application will function in means that the high level of security that permissionless blockchains provide

is unnecessary.

2.6 Conclusion

To conclude, this literature review has examined the fundamentals that make a good E-Voting system, as well

as the approaches that will be taken to develop the new E-Voting system. After evaluating the security

vulnerabilities of E-Voting systems, it was concluded that a security analysis will be conducted before

development begins. In addition, the attributes that determine a good E-Voting system were identified and

ranked based on their importance. It was concluded that the attributes ranked highest will be implemented

in the earlier sprints, and the attributes ranked lower in the later sprints. Further, upon the completion of this

project the System produced will be evaluated against the identified attributes. Lastly after considering a

variety of options, it was decided that the new E-Voting System should be implemented using permissioned

Blockchain technology.

 39

Technology Review

This section will discuss the various frameworks and technologies that can be used to develop the system.

When one approach is chosen over another, a suitable justification will be provided.

2.7 Native, Hybrid, Progressive and Cross platform
To ensure that all students at the University of Surrey can vote in a student election, the system must

function on Android and IOS devices. This is because 90% of individuals own either an Android or IOS device,

thus by ensuring the system functions on both device all students will be able to vote.

There are three technologies that can be used to ensure the system functions on Android and IOS.

2.7.1 Native

A native application is developed exclusively for a single platform [35]. This means that it is written in one

programming language for a particular operating system [36]. Native applications for Android devices are

written in Java or Kotlin and native applications for IOS devices are written in Objective-C or Swift.

Native applications perform faster due to the fact that the code written is less complex [36]. Additionally,

Native applications function well in offline environments as internet connectivity is not required to render UI

components [37].

The user experience for Native applications is much better because Native applications are a nuanced version

of their device’s default apps [38]. Furthermore, when a user performs some functions, he quickly

understands the natural flow of the application because it is similar to apps already on the device [38].

Lastly Native applications are more secure. This is due to Native applications non-reliance on web

technologies which often have security flaws. Therefore, developing a Native mobile app is a great way to

guarantee the protection of user data [38].

The main drawbacks of building a Native application is that multiple code bases will have to be maintained

and worked on separately, if the application is being used on IOS and Android [38]. Therefore, more

knowledge is required for the development of native IOS and android applications, as expertise in two

different programming languages (Java and Objective-C) is required.

 40

2.7.2 Hybrid

Hybrid applications have been described as the golden mean between native and web applications [36].

Hybrid apps are deployed in a native container that uses a mobile WebView object, giving users the look and

feel of a Native application [39]. It does this by taking advantage of web technologies such as JavaScript,

HTML and CSS.

Hybrid applications running on different devices will use the same backend code. This allows for hybrid

applications to be developed fast [40]. Additionally, because only one codebase is needed for the application

to run on Android and IOS, maintenance of the application is much easier. Both of these feats reduce the

development cost of hybrid application, especially when the application is intended for multiple platforms.

The web-based nature of hybrid applications means that the application will not work without internet

connection. To add on, the performance of the application will be dependent on the user’s internet

connectivity [36]. Another disadvantage is that despite sharing a codebase certain features may be supported

by Android and not by IOS [37]. This could lead to display inconsistencies and bugs that will have to be caught

with additional testing.

2.7.3 Cross-Platform

Cross-Platform applications are similar to hybrid applications, in the sense that they allow for a single

codebase to develop applications on IOS and Android. However, Cross-Platform applications are different

from hybrid applications as they do not rely on web technologies. Instead, code written in Cross-Platform

application are compiled to native element giving the user the look and feel of a native application. The three

most popular Cross-Platform technologies are: Flutter, React Native and Xamerin.

One advantage of Cross-Platform applications is the reduced development time, as only one code base will

need to be maintained [37]. Additionally, the applications non-reliance on web technologies means that it

can function without internet connection. Furthermore, while the overall performance of Cross-Platform

applications is slightly slower than Native applications, it performs much better than Hybrid applications [41].

Also, because the code written is rendered to native code, Cross-Platform applications will give a native

experience to IOS and Android users.

 41

The main disadvantage of Cross-Platform applications is the level of skill required to be able to develop an

application that is adapted to different platforms. A developer will need to keep all the little differences

between operating system and the hardware they run [36].

2.7.4 Evaluation

In order to determine which development approach will be taken, the above approaches must be measured

against the needs of the proposed E-voting system.

If the e-voting system was implemented as a Native application, two separate codebases would need to be

maintained, in order to allow for IOS and Android users to use the application. Although a Native application

would allow for the highest possible performance and better security (an important characteristic for an e-

voting system), the time constraints of the project means that it would be impractical for two separate

versions of the application to be developed simultaneously.

While hybrid applications allow for a single codebase to be maintained, it does this at the cost of

performance and user experience. Problems with the UI will occur as a result of students having phones of

various screen sizes. Even if an iPhone and Android device are used to test the UI of the application, it would

be infeasible to test all possible screen-sizes. Emphasis has been placed on improving the student voting

experience, therefore developing a hybrid application will not allow this goal to be achieved.

Cross-Platform applications are slower in comparison to Native applications. While they provide a better user

interface than hybrid applications, developing a Cross platform application require specialist technical skills.

Furthermore, extra work will be requiring to configure the application function as indented on both IOS and

Android users.

2.7.5 Selecting an Approach (PWA)

Like hybrid applications progressive web application are built using web technologies. A progressive web

application is best described as a mobile responsive website that acts and feels like an app. Frameworks such

as Angular and React can be used to build these kinds of applications. Further, Progressive web applications,

offers the benefits of a mobile app and web application with minimal downsize. Firstly, because only a single

codebase is required the application can be developed faster than a native application. Secondly, because the

application requires an internet connection, users will always be using the latest version of the application,

increase the secure of the system. Thirdly, because the application is operating on the web, the system can

 42

generate a link to allow students to access the election. This is something that cannot be done easily with

native and cross platform applications as user will have to first download the app before they are able to

vote. The impact on turnout could be significant as having to download an application is an additional step

that lengthens the process of voting. This is in line with study that show approximately 20% of users are lost

during the onboarding stage of a native app [42]. In addition, students will be able to vote on any device that

has a browser. By increasing the number of devices students can vote on, it is logical to assume this will

increase the likelihood of them voting. Lastly as an individual who wants to work in web development after

university, selecting this approach will allow the acquisition of vital web development skills that can be used

in the real world. Therefore, the e-voting system will be implemented as a progressive web application.

Chapter 3: Problem Analysis

This chapter will offer an analysis of the problems the USSU face with their existing E-Voting System, which

will inform the requirements specification of the new E-Voting system. More specifically this chapter will

comprise of an analysis of, the USSU’s existing E-Voting System and the findings from interviews, focus

groups and surveys.

3.1 Interviews, Focus groups and Surveys
The best way to ensure a system meets the needs of users, is to ask users for their opinions. While there are

many techniques that can be employed to find out what users require, interviews, focus groups and surveys

were used in this project. This section will present and analyse the opinions of the Surrey Student and USSU

staff.

3.2 Interviews
Interviews are one on one meetings, in which questions are asked by the interviewer and answered by the

interviewee. Interviews are an ideal way to find out what specific individuals want to see in the new E-Voting

system. Further, interviewees can share their experiences when using the existing E-Voting system and

spotlight flaws such as a poor UI. Additionally, interviewees can provide innovative ideas and suggestions

that can solve these issues. However, the quality of the information gained from an interview depends solely

on the person being interviewed. Due to this, interviews were only conducted on the members of USSU staff

that use the system. This is because, their experience as Administrators of the current E-Voting system mean

they, have a more technical understanding of the current system when compared to students. This makes

 43

staff at the USSU more suitable for highlighting the shortcomings of the current system and suggesting ideas

and improvements.

3.2.1.1 Interview Ethical Consideration

The interview was conducted with staff members at the USSU. In compliance with the Data Protection Act

(2018) and this project Statement of Ethics, interviewees were asked to sign a consent form (see appendix A)

so that they can be named and quoted in this report.

3.2.2 Interview Analysis

A total of three meetings were held over the course of this project and the key takeaways of each meeting

can be found below. Furthermore, lockdown rules meant that interviews had to be conducted via zoom. To

ensure interviews were as productive as possible, questions were prepared beforehand and each interview

had a predefined objective. The objective and analysis of the outcome of each meeting held with staff at the

USSU can be found below.

3.2.2.1 Meeting 1

The main focus of this meeting was to inform the USSU that the development of a new E-Voting System was

underway. Additionally, getting the VP Voice (Theo) to agree to meet upon request was another objective.

Lastly, ascertaining the key issues with the existing E-Voting System and ideas that could be added to the new

E-Voting System was of paramount importance.

The main outcome of the meeting was as follows:

• The VP Voice (Theo Donnelly) who is responsible for overseeing elections at the USSU agreed to meet

regularly and provide feedback on the progress of my application.

• It was made clear that there are three types of elections that the USSU run, SurreyDecides, AGMs

and Executive resolutions.

• The voting system used by the USSU is provided by a third party MiVocie.

• The Coronavirus pandemic has meant that AGMs which are normally conducted in person are being

conducted virtually using surveys created in Microsoft Teams, an insecure system the USSU does not

wish to repeat.

• The ability to change your vote until the election officially closes, while this idea was welcomed there

was a general feeling that such a rule would have to be decided upon by the USSU’s democracy

 44

committee. This was due to the moral question it raises about people losing votes. It was agreed that

if this feature was implemented there would need to be an option to turn it off.

• The ability to allow QR codes to be scanned by users and then to be taken to the voting page was also

a feature that the was appreciated.

Taking into consideration that the USSU does not have an E-Voting system that can be used for AGMs, the

first two iterations of the new E-Voting system will focus on catering to AGM elections. The last iteration of

the E-Voting system will focus on SurreyDecides elections. Further, a system that caters to executive

resolutions is beyond the scope of this project. This is because executive resolutions are voted on by 12

elected students. Therefore, it would be futile to create a system that will only serve a small number of

students.

Another feature that has been adopted following the meeting was a scannable QR code that allows students

to access an AGM. This ensure that only students in attendance of the AGM can vote in it (in line with the

USSU election policy).

3.2.2.2 Meeting 2

The main purpose of this meeting was to find out more about the USSU existing E-Voting systems. In the

meeting a walkthrough of the USSU current E-Voting system for AGM elections and SurreyDecides election

was given. Details of the walkthrough can be found later in this chapter under the current system.

In addition, it was originally intended for the application server to send authentication requests to Surrey365.

However, for security reasons the IT department at the University of Surrey were unable to grant my

application access to Surrey365. In the meeting the USSU agreed that once the application had demonstrated

core functionality, they would facilitate a meeting with the IT department so that an agreement can be

reached. Therefore, the feature to use Surrey365 to authenticate students and to get access to students’

personal information will be implemented after this project is completed.

3.3 Focus Groups
Focus Groups are group discussions in which participants are given a topic or question to discuss. One

advantage of using focus groups is that they offer an opportunity for new ideas to be formulated as

participants can bounce ideas off one another. Furthermore, focus groups provide insights into the minds of

end-users, which will help in the prioritisation of system requirements. Additionally, focus groups can be

 45

used as a way to ask for user feedback, after each sprint, to ensure the system developed is liked by students.

However, the quality of focus groups is dependent on getting a diverse range of participants to take part.

Without a diverse range of participants everyone will express similar opinions which could mean that the

requirement specification (for the new E-Voting system) alienates a demographic of end-users. Therefore, to

ensure the information gathered from focus groups is truly representative of student opinions a diverse

range of participant based on gender, race, year of study and course was selected.

3.3.1 Focus Group Ethical Consideration

In compliance with the Data Protection Act (2018) and this project Statement of Ethics, participants will be

asked to sign a consent form (see appendix A) so that focus group sessions can be recorded. The recording of

these session will allow for more time to be spent interacting with the participants, as there is no pressure to

take notes during the session. The recordings were deleted upon the completion of this project, and were

stored safely on a password protected MacBook. In addition, student ideas and opinions were kept

anonymous in this report ensuring that the confidentiality of students is respected. Lastly it was made clear

to participants of the focus group that they could leave the session at any time, if they left uncomfortable

(with the questions being asked) or wanted to take a break.

3.3.2 Focus Group Results

After the User Acceptance Testing was run, a focus group consisting of University of Surrey students were

asked a series of questions about their experience when using the application. As mentioned above, due to

legal reasons, the audio recording during the focus group was deleted after the completion of this report,

therefore it cannot be included. The findings from the focus group can be found in Chapter 8: System Testing

in section 8.4.2 UAT Findings.

3.4 Surveys
Surveys are a set of questions that are filled out by participants. The main advantage in using surveys is that

they can be used to gather responses from a large amount of people. However, the issue with Surveys is that

because they are completed independently, unlike focus groups and interviews, clarifications and follow-up

questions cannot be asked. The proceeding section discuss how the survey used in this project was designed

and distributed.

 46

3.4.1 Survey Objectives

Before formulating the questions that will go into the Survey it is important to establish the intended learning

objectives from gathering the data. The main objectives of the survey are:

• To find out what students think about the current USSU E-Voting System

• To find out the most important aspects of an E-Voting System to students

• To find out what kind of devices students want to use to vote on

• To find out if students have any concerns about using an E-Voting system

• To find out if students have any suggestions or ideas that can improve the current USSU E-voting

system

3.4.2 Survey Target Audience

The proposed system is being designed for students at the University of Surrey; therefore, it is important that

the views of as many Surrey students is taken into consideration. To ensure that the responses come from

University of Surrey Students, they will be asked for their university email (as Surrey Student emails end with

@surrey.ac.uk).

3.4.3 Survey Tools and Distribution

Microsoft Forms will be used as a tool to create and distribute the Survey. Microsoft Forms was selected for

the following reasons:

• It is a convenient way for students to complete the Survey as it can be completed via a link on their

phones and laptops.

• It will provide quick and easy access to student responses as responses in Microsoft Forms are

presented in a clear dashboard.

• Updates to the Microsoft Forms dashboard are instant meaning responses from students can be

ascertained in real time.

• It allows for responses to be looked at in a granular way, allowing for deeper insights into student

responses if required.

In order to get the survey completed by as many students as possible the survey link will be sent to those in

my computer science cohort via social media, email and the CompSci WhatsApp group chat. Additionally,

friends (that attend the Surrey of University) will be asked to send the Survey to two other people upon

completion. In line with the project plan, the Survey will open from November 20th 2020 to January 1st 2021,

which is enough time for a large sample of responses to be gathered.

 47

3.4.4 Survey Design

The survey was kept as short as possible (consisting of 10 questions), as a way of ensuring that students

completed the Survey in its entirety. Additionally, to make the completion time of the Survey quick the

majority of question asked were closed questions with the flexibility for the respondent to expand upon their

answer. For example, as shown in Figure 11 below, the question allows the respondent to provide a

justification for the answer. This allows for students to expand their answer and offer more clarity if they

desire.

It was also important to record the age, gender, ethnicity, course and year of study of each respondent so

that biases are identified.

Figure 11: Example of Open Question

Since the completion of this section the online Survey has been removed (to prevent late respondents).

However, the full Survey can be found in the Appendices.

3.4.5 Survey Ethical Consideration

In compliance with the Data Protection Act (2018) and this project’s Statement of Ethics, survey participants

were asked for their informed consent to use their responses in this report. All responses were kept in a

password protected Microsoft Teams account, and were deleted upon this report’s completion. The survey

 48

asked students for information that would be classified as sensitive personal data. For example, the ethnicity

and gender of each respondent was collected. This was done to allow for a robust evaluation of the data

collected (at a later stage). Indeed, it is important to note that students had the option to opt out of these

personal questions by selecting ‘prefer not to say’. Lastly, in the Survey description it was made clear that

students were under no obligation to complete the survey once they had started it.

3.4.6 Survey Response Analysis

Below is a summary of the survey responses along with how these responses will inform the requirements of

the system.

It is important to note that at the time of the survey’s launch 1st year students have not yet voted in a USSU

election, so have not used the existing E-Voting system. This means responses from students in 1st year on

the existing E-Voting system will be disregarded. However, their contribution to the other questions in the

survey will be treated with the same validity as other year groups.

A total of 93 students with a valid University of Surrey email completed the survey.

The majority of students who answered the Survey were from African descent (62%) and 58.1% of

respondents were female. Year groups were better represented with no single year group having more than

29% of respondents. There was also a diverse range of courses that participated with the most popular

course being computer science (28%). A full evaluation of the sample and how biases could have influenced

the result of the survey can be found in the evaluation chapter.

Figure 12: Percentage of Male and Female that took the survey

 49

Approximately 2/3 of the respondents said that they had voted in a student’s union election. Furthermore, of

the people who have voted using the USSU existing E-Voting system 65% did not believe their voting

experience was good, with 59.3% saying their experience was neutral and 5.9% saying their experience was

bad or very bad. This demonstrates that there is a need for a better E-Voting system that students can be

enthusiastic about.

Figure 13: Percentage of Student who have voted in USSU election

A small minority of students do not trust the USSU to oversee and manage student elections (6.5%). This

means that the concerns raised in the literature review about a private blockchain being susceptible to

internal attacks, can be deprioritised as students trust USSU staff to oversee elections.

Figure 14: Percentage of Students who trust the USSU to carry out election

The survey also revealed that the majority of students would want to vote via their iPhone or Android (88%).

The second most popular method of voting is via a laptop, which concurs with the literature review which

asserted that a web application is the most convenient solution (as it allows student to vote via their Android

and iPhone).

 50

Figure 15: Popularity of Devices for Voting App

Additionally, the survey showed that students rank democracy, security, usability and reliability as the most

important properties in an E-Voting system. This concurs with the conclusion drawn in the literature review

which ranks democracy as the most important property of an E-Voting system. It is also important to note

that many students do not view the privacy of their vote as important, reinforcing the idea that semi-privacy

should be pursued instead.

Figure 16: Most important aspects of E-Voting to Students

It was also shown that the majority of students do not have any concerns about voting using a web

application, with 85% answering no. Those that answered yes sighted ‘hacking’ and ‘multiple voting’ as the

cause for concern. However, despite students viewing E-Voting web application as trustworthy, only 58% of

students trust the USSU E-Voting system to properly record and count all votes. From this we can deduce

that 26% of students trust the principle of E-Voting but do not trust the system being used by the USSU. This

 51

is a significant number of students who perceive the E-Voting system used by the USSU to be insecure,

highlighting the need for a better system.

Figure 17: Percentage of Students concerned about using a Web app for Voting

Figure 18: Number of Student who trust the USSU records votes properly

Lastly the final question which asked students for their suggestions on features the E-Voting system could

incorporate had three noteworthy responses.

The first feature was for the system to send automatic email receipts after students cast their vote. The logic

here is that students will be put at ease, as the email receipt allow students to verify that their vote was

counted correctly. However, this feature would breach the important concept of privacy which was discussed

in the literature review. With that said, verification is important so, instead of sending an automatic email

receipt, an anonymous list of how each student voted will be publish such that students check the list to

verify their vote (semi-privacy). For security purposes only administrators can publicise the list after the

election is completed.

 52

The second suggested feature was to include the biography of candidates within the E-Voting application.

This would only be possible in SurreyDecides elections where candidates are known in advance of the

election. Implementing this feature in AGM election is infeasible because USSU bylaws allow for any student

to run on the day of the AGM. In addition, AGMs are carried out in a short time window, therefore it is

unlikely that students at the AGM will be able to read the biographies of all candidates.

The third feature was to show the election results in real time. This was a good idea in theory, however

revealing this information before ballots closed could influence the election outcome.

To conclude the Survey conducted reaffirmed ideas established in the literature review and confirmed that

students are not satisfied with the existing E-Voting system used by the USSU.

3.5 4.1.4 The Current System

This section will discuss and evaluate the two existing E-Voting Systems used by the USSU.

3.5.1 Mi-Voice

Mi-Voice is the name of the E-Voting System used for SurreyDecides elections. This system was managed and

developed by a third-party organisation (called Mi-Voice).

3.5.1.1 Overview of Mi-Voice

Mi-Voice allows administrators to set up events which can consist of multiple contests(elections). In the USSU

case SurreyDecides is the election event and the contests are the various elections within SurreyDecides, for

example the election of the USSU President. Every contest requires a name, description and can be

customised to suit the election being held. These customisation options range from allowing open responses

to only the election system (FPTP or STV). Once the contest is created, the name, photo, description and

other information of each candidate has to be manually entered by the administrator. Once all candidates

have been inputted, administrators can start, end and release the results of the election. Administrators also

have access to a live dashboard which shows key stats about the election, such as student turnout and the

vote tally.

 53

In regards to students, once the election has been set up and made live by the administrator student will be

able to vote, via a unique link (generated for each student). Students can access this link via their email, or

the USSU website which will redirect them to their unique link once they log in (see diagram below).

3.5.1.2 Evaluation of Mi-Voice

The main problems identified when using Mi-Voice for SurreyDecides are as follows.

Labour intensive: One of the main problems with Mi-Voice is that candidates in the election have to be

manually entered. This is a long-winded and tedious process that requires a lot of work as SurreyDecides

elections normally consist of 70 candidates. Addressing this issue will free up the time of USSU staff members

allowing them to focus on other USSU priorities. Furthermore, one way in which this issue could be solved is

by allowing each candidate to upload their own details and manifesto. This self-service feature will reduce

the likelihood of candidate details being entered incorrectly.

Single use: During the demonstration, it was made clear that Mi-Voice can only be used by the USSU to run

SurreyDecides elections. AGMs could not be run using the system because Mi-Voice requires the candidates

to be known in advance of the election (something which cannot be done for AGMs). Furthermore, having a

single application in which all elections were conducted would improve the voting experience for students

and management of elections for USSU staff. In addition, it will also mean that less time will be spent having

to understand and maintain two different systems. Indeed, the best solution to this problem is to allow

administrators to create elections in which the candidates are unknown. Overseers of the AGM will then be

able to start the election and share the voting link with attendees via a barcode. Information detailing how

this feature will function can be found in the Requirement and Design section below.

Defragmented process: Immersion when students use Mi-Voice system is lost early on. One reason for this is,

the candidate nomination process is conducted using another system. Instead of candidates nominating

themselves via the USSU website, candidates should be able to self-nominate via same E-Voting system that

will be used to conduct the election. Similarly, other students should be able to endorse candidates who have

nominated themselves, until the number of endorsements the candidates need exceeds the specified

threshold. This feature would streamline the E-Voting process bringing together many defragmented

components, which will improve the overall experience of student elections.

 54

3.5.2 AGM Election System

3.5.2.1 Overview of AGM E-Voting System

AGMs are normally conducted in person; however, the Covid-19 pandemic has meant that student elections

have been moved online. As stated in meeting 1, in the last academic year (2019/2020) the USSU used

surveys powered by Microsoft teams to conduct AGMs. Furthermore, the USSU were not keen to repeat this

insecure method of voting so created their own inhouse E-Voting system that leverages power automate and

logic apps. Below is a step-by-step walkthrough of how election using this system work.

Once an AGM is started, the supervisor of the AGM will be presented with the below Power Automate card,

prompting them to start the election.

Figure 19: Launch AGM Using Power Automate

Once the start button is clicked by the supervisor, another card will popup asking for the name of the

position being contested and for the name of the candidates running in the election.

 55

Figure 20: Entering Candidate in AGM Elections

Once the supervisor has added all the candidates and contests name (position title), they can start the vote.

The card below shows the link that attendees can use to vote in the AGM. The card also shows all of the

candidates can be voted for. Note that RON and Abstain were add by the system automatically because these

options are required in all USSU elections.

Figure 21: Voting In Process

 56

Students will be prompted to enter their Surrey365 credentials and will then be redirected to a SharePoint

poll.

Figure 22: Surrey365 Login Screen

Students will then be able to select which candidates they wish to vote for. For the purposes of this tutorial a

vote was given to Alice. Once the student clicks ‘submit your vote’ their vote will be saved and they will be

unable to vote again.

Figure 23: Vote in Election

 57

Figure 24: Vote Thank you message

Once all attendees have finished voting the supervisor can click the ‘count the votes’ button. The results of

the election will then be counted and presented to the supervisor. The supervisor will then have to enter the

name and email of the winning contestant. Furthermore, the supervisor can choose to run more contests for

other positions or can end the AGM if there are no more contests.

Figure 25: Results of Election

 58

3.5.2.2 Evaluation of the AGM E-Voting System

The main problems identified when E-Voting used for AGM are as follows.

System security: The biggest concern is that the technologies being used by the system (logical apps,

SharePoint and power automate) weren’t designed to support applications that require high levels of

security. While USSU election are conducted in low threat environments, the system’s ability to maintain the

integrity of votes questionable. To add on the application was created by a non-technical developer who has

not carried out a security analysis on the system. To resolve this, the E-Voting System designed in this project

will undergo a security analysis to find and mitigate vulnerabilities (see design section).

Lack of testing: From questioning the internal developer, only alpha testing has been conducted on the

system. This in combination with the fact that the developer is non-technical means that the E-Voting system

may not function as indented. Unlike the USSU existing system the E-Voting system developed in this project

will undergo alpha and beta testing to ensure all requirements function correctly.

Dependencies: Another issue is that the system leverages technologies the USSU are not directly in control

of. In an event were SharePoint stops working, resolving the issue will require the assistance of other system

administrators at the university. Furthermore, while the E-Voting system relies on some dependencies (IBM

Hyperledger Cloud) the system developed as a standalone system with containerised components.

Therefore, in the unlikely event that IBM’s Hyperledger Cloud stopped functioning, the private blockchain

could be replace with a backup or another distributed database.

Virtually orientated: The system was created for the AGMs taking place this academic year, which are all

virtual (due to the covid-19 pandemic). This means that the USSU will revert back to in person paper ballot

elections next year, which presents new challenges (explored in the literature review). One issue is that

attendees will have to trust the AGM’s supervisor to count all votes with integrity and accuracy. With the E-

Voting system developed in this project attendees do not have to put their trust in a stranger, instead they

will put their trust in a robust and accurate E-voting system.

Single use: Another issue is that the system can only be used for AGM elections. Furthermore, using two

different systems for elections creates a multitude of issues (which have already been explained in Mi-Voice

evaluation).

 59

Chapter 4: Requirements

This section brings together the information gathered in the Literature review and Problem analysis section,

to provide a description of the new E-Voting System that has been developed in this project. The IEEE

requirement specification template was used as a guide to ensure requirements and features were presented

in a clear way.

4.1 Overall Description
The proceeding section will discuss the E-Voting system’s: full scope, expected functions, intended operating

environments, end users, constraints, functional dependencies and assumptions.

4.1.1 Product Perspective and Scope

As stated in Chapter 3: Problem Analysis the USSU currently uses two different E-Voting Systems, one for

AGM Elections and another for SurreyDecides elections. The time constraints of this project, mean that it

would be infeasible to attempt to implement a replacement for both E-Voting Systems. Therefore, the new

E-Voting system will be designed for the conduction of AGM Elections. The ability to conduct SurreyDecides

elections will be added after the completion of this project (see Chapter 10 Evaluation).

The new E-Voting system will seek to expand upon many of the features that exist on the current system, as

well as introduce new features that improve the system. With that said, the new E-Voting system will be a

standalone application, that will interact with the blockchain database via a Node.js server.

 As shown in figure 26, the E-Voting system will consist of three main components: the web application

(client side), the Node.js server (sever-side) and the Hyperledger Blockchain (distributed database).

Figure 26: Diagram showing High-level overview of the E-Voting System

 60

Information about how each component will communicate and interact with each other can be found under

System Architecture in Chapter 5: Design.

4.1.2 Product Features

Below is a high-level summary of the major features that the E-Voting System will allow users (students and

staff) to perform.

The E-Voting system will allow students:

• To log in to their accounts using their credentials

• To log out of their account

• To vote in the elections in line with the election rules, once logged in.

• To view the biographies of election candidates

• To view the election results once they are made visible by the administrator

• To use their device to scan a QR code to access AGM elections

• To verify that their vote was counted correctly, if made possible by administrators

• To register as a candidate in the election

• To nominate candidates who wish to stand in the election

The E-Voting system will allow administrators:

• To log into the E-Voting system using their Surrey365 credentials

• To log out of their account

• To grant administrative privileges to other USSU staff members

• To create SurreyDecides and AGM elections with customize rules, for example choosing an election

system (STV or FPTP)

• To delete created elections

• To edit created SurreyDecides and AGM election, for example adding and removing candidates

• To start SurreyDecides and AGM elections, making them available for students to vote in

• To view election results before they are made visible to students

• To end elections and make election results visible

• To publish an anonymized list of how each student voted in the elections

• To approve student who register as candidates in the election

 61

4.1.3 User Classes and Characteristics

As stated throughout this report the main users of the new E-Voting System will be University of Surrey

Students and USSU staff members. Furthermore, USSU staff members can be divided into ordinary staff

members and election officers. These types of users will differ in regards to what they are able to do on the

system. In addition, AGM officers (who can be student or staff members) also have a specific way in which

they will use the system. Below is a description of each user, and how their interaction with the system is

expected to differ.

4.1.3.1 Ordinary Students

Students are the primary users of the E-Voting system and their opinions on the E-Voting system will

determine the success of this project. Students are expected to use the E-Voting system primarily to vote in

elections held by the USSU. Students are also expected to use the system to view the election’s result, when

released, and to verify that their vote was counted correctly.

4.1.3.2 Part-time Student Officers

As stated in the problem analysis section, part-time elected student union officers (PTOs) are used to

supervise AGMs. As a result, PTOs will be expected to use the E-Voting system to start and manage AGM

elections. Furthermore, it is important to note that candidates for an AGM are unknown until the AGM starts,

therefore PTOs will be expected to use the E-Voting system to add candidates that put themselves forward.

PTOs are still students therefore they will be given the lowest level administrative privileges.

4.1.3.3 Election Officers

The election officers are the most senior members of staff responsible for overseeing the democratic process

at the University of Surrey. They will be expected to use the system to manage and oversee all elections at

the University of Surrey and will be given the highest administrative privileges. This will include, managing

the accounts and privileges of other administrators as well as creating, editing, starting, ending and deleting

elections.

4.1.3.4 USSU Staff

USSU staff work at the USSU but are not necessarily responsible for overseeing elections. They will be

expected to interact with the system to perform tasks requested by the election officer, for example creating

AGM elections. However, because they are not responsible for managing elections, their ability to manage

 62

election will be restricted. For example, USSU staff will not be able to delete or edit elections. Too add on, the

privileges of USSU staff members can be changed by election officers.

4.1.4 Operating Environment

React along with node.js was used to create the E-Voting system as a web application. This allows for the E-

Voting system to function on mobile phones and computers that can run a web browser. More specifically

the device must be able to connect to the internet. According to react official docs, react application will

function on all modern browsers, including Internet Explorer 9+, chrome or Firefox.

4.1.5 Constraints

The Hyperledger Blockchain that the E-Voting system will leverage will be set up using IBM Cloud (view

Technology Review in Chapter 2: Research). This was selected as it allows for the blockchain to be deployed

and utilised freely for a one-month period. Upon the completion of this project the USSU will be asked to

continue paying any fees associated with running the Blockchain on the IBM Hyperledger Cloud. Due to this,

the E-Voting system will be implemented using three nodes. If the USSU wish to continue using the system

more nodes will be required to guarantee security.

The E-Voting System produced will be deployed using Netlify and Heroku, which allow for free deployment.

Further, the USSU will be advised to use the University’s deployment own deployment servers if the wish to

continue using the system.

4.1.6 Assumptions and Dependencies

This requirement specification was produced under the assumption that IBM Hyperledger Blockchain will

continue to be free for a one-month period. Additionally, as this E-Voting System was developed using react

(a Facebook framework) it is assumed that Facebook will continue to keep react available and open-source.

4.2 System Requirements
The proceeding section details the codified requirements for the new E-Voting System proposed in this

project. The requirements have been split into two categories: functional requirements and non-functional

requirements. Functional requirements describe what the system is expected to do. Meanwhile, non-

functional requirements describe the systems attributes which include: performance, accuracy, security,

software quality and communication.

 63

4.2.1 Functional Requirements

As mentioned in Chapter 1: Introduction the system was developed using an agile approach. This means that,

a set of requirements were specified at the beginning of each sprint of the application. The requirements

deemed most important were identified and implemented in earlier sprints. These requirements will be used

to conduct functional testing (see Chapter 8: System Testing).

For the purposes of this report each functional requirement has been given a:

1. Unique identifier – a unique numerical key that will be used to refer to the requirement in the

proceeding sections of this report.

2. Synopsis – a short and relevant title for the requirement.

3. User Class – the user(s) to use the requirement (all users are identified in User Classes and

Characteristics).

4. Sprint – the sprint that the requirement will be completed in.

5. Description – a description of the requirement use case.

ID Synopsis User Class Sprint Description

FR1 Log in to
account All Users 1 All users of the application must be able to log into

their account using valid credentials.

FR2 Log Out of
account All Users 1 All users of the application must be able to log out of

their account

FR3 Create Student
Account

Election
Officers 1

Election Officer(s) must be able to create new Student
accounts, with a first name, last name, email, password
and privilege.

FR4 Create Admin
Account

Election
Officers 1

Election Officer(s) must be able to create new Admin
accounts, with a first name, last name, email, password
and privilege.

FR5 Change
Password All Users 1 All users must be able to change their own password.

FR6 Create AGM
Election

Election
Officers, USSU
Staff

1
Election Officer(s) and USSU staff must be able to
create elections with an election name, description,
start and end date.

FR7
Edit AGM
Created
Elections

Election
Officers, USSU
Staff

1
Election Officer(s) and USSU staff must be able to edit
the attributes (name, description and date) of a
created AGM election.

 64

FR8 Delete AGM
Elections

Election
Officers 1 Election Officer must be able to delete any election on

the system.

FR9 View all
Elections

Election
Officers, USSU
Staff

1 Election Officer(s) must be able to view all created
elections on the system

FR10 Create AGM
contest

Election
Officers, USSU
Staff, PTOs

1
Election Officers, USSU staff and PTOs must be able to
create AGM contests. Each contest must have a
contest name, description(optional), list of candidates.

FR11 Edit AGM
contest

Election
Officers
USSU Staff

1
Election Officers, USSU staff and PTOs must be able to
edit the attributes (name, description and list of
candidates) of a created AGM contest.

FR12
Start AGM
Election
Contest

Election
Officers, USSU
Staff, PTOs

1
Election Officer(s), USSU staff and PTOs must be able to
start the contest, making it available for students to
vote in.

FR13 Generate QR
code System 2 The system must be able to generate a unique QR code

for each AGM contest

FR14 Generate
Voting link System 2 The system must be able to generate a unique voting

link for each AGM contest

FR15 Access AGM
via QR code Students 2

Students must be able to access the election by using
their device to scan the QR code of the election or by
using the voting link

FR16
Vote in AGM
Election
contest

Students 2 Students must be able to cast a vote for a candidate in
the AGM election.

FR17 Record Votes
to Blockchain System 2 Votes casted in the election by students must be stored

in the system's Hyperledger blockchain

FR18 Tally all votes
correctly System 2 The system must be able to count all votes for each

candidate correctly.

FR19 Change Admin
Privileges

Election
Officers 2 Election Officer(s) must be able to add and remove

administrative privileges from USSU staff and PTOs.

 65

FR20 End AGM
Contest

Election
Officers, USSU
Staff, PTOs

2 Election Officer(s), USSU staff and PTOs must be able to
end AGM contests, stopping new students from voting.

FR21 Make AGM
Result Visible

Election
Officers, USSU
Staff, PTOs

3
Election Officer(s), USSU staff and PTOs must be able to
make the results of an AGM contests, visible to
students

FR22 View AGM
Results All Users 3 All users must be able to view the result of an AGM

contest.

FR23 Verify Vote Students 3 Students must be able to verify that their vote was
counted correctly by the system

4.2.2 Non-Functional Requirements

Below is a table showing the non-functional requirements for the purposes of the report each requirement

has been given:

• Unique identifier – a unique numerical key that will be used to refer to the requirement in the

proceeding sections of this report

• Type – the category the non-functional requirement falls into (performance, accuracy, security,

software quality, reliability, semi-privacy and communication)

• Description – a description of the requirement use case

ID Type Description

NFR1 Performance Request from users to the server must be carried out in a reasonable amount of

time. Additionally, the application should use loading icons when pages are being

loaded.

NFR2 Accuracy User-input must be validated by the system to ensure the data submitted is in the

correct format, for example: name fields can only accept an input consisting of

letters.

NFR3 Software quality The UI must be intuitive and user friendly. The UI has a constant theme, style and

colours. For example, the buttons and fonts are the same across the application.

NFR4 Software quality The UI must response to invalid inputs into the system in a clear way.

 66

NFR5 Security The system must comply with the data protection act (2018) and all the security

controls outlined in Chapter 6: Security Analysis must be implemented.

NFR6 Security Only the specified User Class (with the correct privileges) should be able to perform

the functional requirements assigned (Chapter 6: Security Analysis).

NFR7 Reliability All users should be able to use the system at any hour in the day, 7 days a week.

NFR8 Semi-privacy All student votes and personal information should be kept confidential(full-privacy).

If the Election officer decides enable verification, students should be able to verify

how they voted(semi-privacy).

NFR9 Communication All three components of the system must be able to communicate with each other.

More specifically, the React web application must be able to send requests and

receive responses from the node.js server, and the node.js server must be able to

send requests and receive responses from the Hyperledger Blockchain.

Chapter 5: Design

This Chapter will focus on how the new E-Voting system will function to ensure that the requirement

specified are met. Furthermore, a relevant set of diagrams were used for each component to provide a visual

representation of the system.

5.1 System Architecture
As shown in Figure 26 which was shown in Chapter 4: Requirements, the E-Voting system is made up of four

main components. Below is a brief description of how each of the components will function.

 67

React Web Application – The react web application will act as the systems front-end, allowing users to

interact directly with the application. The react application will send requests to the node.js server to retrieve

and store data in the blockchain. The react application was further broken down into four subsystems. Use

Case diagrams were produced for each subsystem. Following this, UI Mock Ups, activity diagrams and

sequence diagrams were produced as design documentation to support the development of the application.

Node.js Server – The node.js server will act as the systems back-end, receiving and responding to requests

sent by the react web application. The node.js server will contain most of the business logic of the

application, and will query the Hyperledger blockchain when necessary. A table showing the endpoints that

the node.js server can be found in API design.

Hyperledger Fabric Blockchain – The Hyperledger fabric blockchain will act as the systems primary database.

It will store user credentials, elections, election contests and votes of students in the election. The

architecture as well as a brief description of the blockchain was produced to show the blockchain’s

functionality. An entity relationship diagram was produced to show the entities, attributes and relationships

that will be stored and maintained by the blockchain.

5.2 React Web Application Design
This section explains how the react web application component of the E-Voting system functions.

As shown in Figure 27, the Web Application was broken down into three subsystems.

 68

Figure 27: React Web Application Subsystems

Login subsystem

The login subsystem, allows all users to login to the application. This is an important subsystem because in

order to use the functionalities of the E-Voting system users must log in to their account. This component will

also encompass the Administrators being able to change the credentials of other users.

Election management subsystem

The Election management subsystem, allows administrators to create, edit and delete AGM elections. This

subsystem will also allow administrators to release the results of the election. In addition, the admin will be

able to reveal to students how their vote was counted in the AGM election, allowing students to verify their

vote.

AGM election subsystem

The AGM election subsystem, allows administrators to configure AGM elections, students to vote in them

and view the results once they are released.

5.2.1 Use Case Diagram

Use Case diagrams are behavioural UML diagrams that are used to summarise details of a system. They are

ideal for showing how entities (known as actors) will interact with the system in order to perform a specific

action. The actors used in the use case diagram correlate with the user classes mentioned in Chapter 4:

 69

Requirements. In the design of the proposed E-Voting system, use case diagrams were chosen to

demonstrate how the users will interact with the different subsystems in the web application.

The table denotes what the symbols in a Use Case diagram mean:

Symbol Name Description

Actor The person or entity that wants to

perform or fulfil the associated

use cases.

Use Case The action/functionality that the

system will allow associated actors

to perform.

 Associate Used to connects an actor to a use

case.

 Include Used to connect two use cases,

every time the base use case is

executed the include use case is

executed as well.

 Extend Used to connect two use cases,

every time the base use case us

executed the extend use case will

happen sometimes.

 Generalise Used to connect two actors or two

use cases. The general use case

acts as a parent and its children

(known as specialised use case)

inherit all its behaviours.

Specialise use case have their own

behaviour in addition to the

behaviour they inherit.

 70

Figure 28, 29 and 30 below provide a high-level overview of all the use cases that can be performed by the

different actors using the system. The actors used in the diagrams have already been identified and explained

in Chapter 4: Requirements under user classes. Each diagram represents a different subsystem of the web

application.

Figure 28: Use Case Diagram for Login Subsystem

As shown in Figure 28, the user actor which represents all users of the system, can log in and logout of the

system. When a user attempts to log in the system will always verify their password, which is represented by

the includes arrows. Furthermore, on some occasions (when the user incorrectly enters their password) the

system will display a login error, which is represented by the extend arrow. Election officers are children of

the User actor, inheriting all of its behaviours and is represented by the generalise arrow. Election officers

have the additional behaviour of being able to change privileges of other users in the system. In addition,

Election officers will have the ability to create new user, which can either be students account or admin

accounts.

 71

Figure 29: Use Case Diagram for AGM Election Subsystem

As shown in Figure 29, the AGM Election subsystem has three main actors: the USSU, PTO, Students. The

actor ‘the USSU’ refers to, Election officers and USSU staff. These two actors are described in Chapter 4:

Requirements. PTOs are low level administrators with privileges that allow them to run already configured

elections. Unlike the USSU actor, PTOs cannot configure AGM elections. This relationship between PTOs and

the USSU was modelled by assigning the shared behaviours to the PTO actor and then allowing the USSU

actor to inherit these behaviours. Students are able to use the AGM subsystem to vote in AGM election. Their

vote will immediately be stored in the blockchain by the system which is represented by the includes arrow.

Once the USSU has decided to release the results of the AGM Election students will be able to view the

results.

 72

Figure 30: Use Case Diagram for Election Management Subsystem

As shown in Figure 30, the Election management subsystem has two actors: Election Officer and USSU staff.

These two actors are described in Chapter 4: Requirements. Election officers have special privileges that

allow them to reveal how a student voted in the election. USSU Staff can create, edit, delete and view

elections.

5.2.2 Activity diagrams

The Use Case diagram above only offers a high-level overview of how users can interact with the system. In

addition, it is still unclear how AGM elections will be carried out in this proposed E-Voting System. Chapter 1:

Introduction and Chapter 4: Requirements have only briefly discussed what AGM. Therefore, to better

understand how the E-Voting system proposed in this project will fulfil its most important use case, the

facilitation of elections, activity diagrams produced. Activity diagrams are behavioural diagrams used to

 73

describe aspects of a system. They are similar to flowcharts in the notation they use, and allow for the

modelling of advanced behaviours. More specifically the activity diagrams below show, how the E-Voting

system will facilitate, the creation, configuration and running of AGM.

As shown in Figure 31 AGM Elections can be broken down into sequential steps. The first step which can be

carried out by Election Officers or USSU staff is to create the AGM Election. When AGM elections are created

the system will check that the parameters required to create an election have been entered correctly by the

user. Once this is done, the election can be started, by the election overseer (typically a PTO). Upon starting

the AGM Election, the individual overseeing the election will need to create an election contest. An AGM

contest is an election in which students can vote for specified candidates. Under AGM elections a contest can

only be created once the election has been started. The election overseer will be required to enter the name

of the contest as well as the names of the candidates that have put themselves forward. If these parameters

are entered correctly the election overseer can proceed to start the AGM contest. A voting QR code will then

be generated by the system. This will allow students in the room to use their phones to scan the QR code to

gain access to the AGM Contest. When the election overseer is satisfied that all students have voted they will

be able to end the AGM Contest and display the results. The election overseer will then have two options to

continue the AGM with a new AGM contest to elect another student, or end the AGM Election. If the former

is chosen the Oversee will have to create another AGM contest and follow all the proceeding steps. If the

latter is chosen the AGM election ends.

 74

Figure 31: Activity Diagram for AGM Elections

 75

5.2.3 Sequence diagrams

The activity diagrams produced, provide a walkthrough of how AGM elections will function on the proposed

E-Voting system. However, it is still unclear how actions initiated on the client will be communicated to the

server-side and database of the E-Voting system. For instance, what messages are sent between the react

web application, the node.js server and the Hyperledger blockchain database, when the user clicks a button.

To make it clear how actions triggered by users are completed from end to end by the system, sequence

diagrams were produced. Sequence diagrams are another behavioural UML diagram that details how

operations are carried out between different components within a system.

A total of two sequence diagrams were produced. The first details how elections are created and stored in

the Hyperledger Blockchain and the second details how students can login and vote in elections (with their

votes being stored in the Hyperledger Blockchain).

Figure 32: Sequence diagram showing students vote

As shown in Figure 32 when the user clicks the create election button the react application calls the

createElection endpoint in the node.js server. The node.js server will verify that the parameters are valid and

then store the created election in the Hyperledger Blockchain database. If the node.js considers the

parameters to be invalid then it will send an error message back to the react application. The react

application will then display the error message to the user. For more information on the createElection

endpoint and the parameters it will accept see API design.

 76

Figure 33: Sequence diagram showing students vote

As shown in Figure 33 when the user clicks the login button the react application calls the login endpoint in

the node.js server. The node.js server will verify that entered login credentials are valid. If so, the user will be

redirected to the voting page. If the node.js deems the credentials to be invalid then it will send an error

message back to the react application. The react application will then display a login error message to the

user. For more information on the login endpoint and the parameter it will accept see API design. Once

logged in the user can select the candidate they wish to vote for and click the cast vote button. When the

button is clicked the castVote API will be called and the node.js server will verify that the user has not voted

before. If the validity check is successful the vote will be added to the Hyperledger fabric blockchain ledger. If

validity check is unsuccessful the node.js server will display send an error message back to the react

application, which will be displayed to the user.

5.2.4 User Interface Design

The user interface is extremely important, as it will be the part of the application users directly interact with.

Below details how each page in the system will look, as well as the colour scheme chosen for the application.

 77

5.2.4.1 Logo

Figure 34 is the logo that was design for my application. The Stag icon was used in the logo because it is the

mascot of the University of Surrey and the USSU.

Figure 34: Logo for the E-Voting System

5.2.4.2 Colour Scheme

While it would have been appropriate to ask users during focus groups what colours they would like the E-

Voting system to be, it is likely to yield a negative result. This is because students are likely to respond with

their favourite colours as opposed to colours suitable for an E-Voting Application. Therefore, the application

will consist of colours commonly used on the University of Surrey and the Students Unions websites. These

colours include:

Purple: which is commonly associated with royalty and nobility will be the primary colour of the application.

Blue: which is a conversative colour associated with security will be the secondary colour of the application.

Red: which represents danger and aggression, this will be used to highlight important messages, error

messages and any problems within the application.

Figure 35: Colours Scheme used for the E-Voting system

 78

5.2.4.3 UI Mock-ups

UI mock-ups were produced for the E-Voting system. The mock ups below only show what the application

would look like on a mobile phone. This is because as shown in the survey conducted in Chapter 4:

Requirements most people will vote via their mobile devices. Having said this the web application is

responsive so will scale up and still look aesthetically pleasing on a laptop and other devices. Figures below

illustrate the UI mock-ups.

Figure 36: Mock Up of the Login Page

 79

Figure 37: Mock Up of Create election Page

Figure 38: Mock-up of Manage Election Page

 80

Figure 39: Mock-up of AGM Voting Page

Figure 40: Mock-up of Header/Navbar of E-Voting System

The UI is subject to change during the development process of the application. The actual UI is can be found

the appendixes.

5.3 Node.js Server Design
This section will explain the how the node.js server will interact with the react web application. For details on

how the node.js server will interact with the Blockchain ledger see public key infrastructure. An express

node.js server was used to develop the systems server-side. Furthermore, the sequence diagrams in the

proceeding section showed that the react application will send messages to the node.js server. These

messages will reach endpoints that will be located in the express node.js server. Section 5.3.1 API Design

offers a description of each endpoint along with their parameters.

 81

5.3.1 API Design

Below is a table showing the API endpoints that will need to be implemented in the node.js server in order

for the E-Voting system to function. Because an agile approach was taken, all the designed endpoints where

implemented.

Each endpoint has a:

Name – the name of the endpoint

Parameters – the parameters that the endpoint will need to receive from the client

Type – the type of RESTFUL request (GET, POST, PUT, DELETE)

Description – short explanation of what the endpoint does

Name Type Parameters Description

getLogin GET – Returns details of the user currently logged in.

login POST email, password Checks if the users entered credential match

what is stored on the blockchain, if not an

error message is return. If they are correct

access token is set back (as a HTTP cookie).

logout GET – Logs a user out by removes the users access

token.

createElection POST electionName,

electionType,

startDate,

endDate,

electionDescription

Creates an election with the specified

parameters and store it in the Blockchain.

Return a message denoting whether or not the

election has been created successfully.

createAGMContest POST electionID,

contestName,

contestDescription,

candidates

Creates an AGMContest for the specified

election and with the specified parameters.

Return a message denoting whether or not the

election contest has been created successfully.

updateContest PUT newValue, attribute,

electionID,

contestID

Updates a specified electionContest with new

values. Returns a message denoting whether

or not the election contest has been updated

successfully.

 82

updateElection PUT newValue, attribute,

electionID

Updates a specified election with new values.

Returns a message denoting whether or not

the election has been updated successfully.

changeElectionStatus PUT electionID,

contestID,

newStatus

Changes the election status from (from closed

to open and from open to ended) Returns a

message denoting whether or not the election

has been updated successfully.

showAGMResult GET electionID,

contestID,

Calculates the results by counting all the votes

in the ballot box and returns the election

results to the client.

getElectionContest GET electionID,

contestID,

Retrieves the specified election contest from

the blockchain ledger and returns it to the

client side.

getAGMResults GET electionID,

contestID,

Retrieves the ballot box from the blockchain

ledger and then Calculates the results by

counting all the votes in the ballot box and

returns the election results to the client.

getHasVoted GET electionID,

contestID,

studentEmail

Returns whether or not a specified student has

voted or not.

deleteElectionContest DELETE electionID,

contestID,

Deletes election contest from blockchain.

deleteElection DELETE electionID Deletes election from blockchain.

getAllElections GET – Returns all elections from the blockchain.

getElection GET electionID Retrieves the specified election from the

blockchain ledger and returns it to the client

side.

castVote POST electionID,

contestID,

ballot (studentEmail

and candidateId)

If the user is a valid voter, and has not

previously voted. The vote will be sent to the

blockchain, a message denoting whether the

vote has been counted will be returned to the

client.

 83

createUser POST email,

firstName,

lastName,

password,

privilege,

userType

Creates a user with the specified parameters

and stores it in the Blockchain. Return a

message denoting whether or not the user has

been created successfully.

updateUser PUT newValue, attribute,

userEmail

Updates a specified user in the blockchain with

new values. Returns a message denoting

whether or not the election has been updated

successfully.

deleteUser DELETE userEmail Deletes user from blockchain

getAllUsers GET – Returns all users from the blockchain.

5.4 IBM Blockchain Cloud Design
As stated in Chapter 2: Research it was decided that a private Blockchain would be used to implement the E-

Voting system. Furthermore, the chapter also explains why IBM’s Blockchain platform was chosen over

alternatives to create and manage the Hyperledger Fabric blockchain for the application.

Figure 41 below shows the architecture of the blockchain ledger.

Figure 41: Hyperledger Blockchain Architecture

 84

Voter CA – The Voter CA is the certificate authority that is responsible for enrolling new identities (users)

onto the blockchain. Once enrolled, users can request transaction certificates from the voter CA. These

certificates can be used to invoke chaincode transactions on the blockchain. Enrolment and verification of

certificates is executed using a public key infrastructure (which is explained in Chapter 6: Security).

Orderer CA – The orderer CA is the certificate authority that is responsible for the enrolment of the orderer

server.

Ordering Service: The orderer node is used to decide the correct order of transaction within a blockchain.

This is important because relies on a deterministic consensus algorithm, meaning that ledger cannot fork the

way many permissionless blockchain networks do.

Voter Peer: The voter peer is a node on the blockchain that is used to execute Chaincode transactions and

record transactions. The voter peer also stores the smart contract deployed onto the blockchain and the

world state (ledger).

Channel 1: Is a private subnet of communications between two or more specific network members. These

members include: all the peers and ordering services in the network, as well as the blockchains ledger and

Chaincode. Each transaction on the network is executed on a channel. The parties that are allowed to

execute Chaincode on the channel are determined by the Voter CA.

Smart Contract – See Smart Contract Design below.

Ledger – See Database Design below.

5.4.1 Database Design

As stated above the ledger where data is stored within a blockchain. The ledger in Hyperledger Fabric consist

of two parts:

The world state – A database that holds the current values of a set of ledger states. The world state makes it

easy for the Node.js server to directly access and appended data to the blockchain.

Transaction Log – The history of transaction that resulted in the current world state current values.

Hyperledger Fabric expresses the data in the ledger as key-value pairs. IBM Blockchain gives us the option to

either use LevelDB or CouchDB, both of which have pros and cons.

LevelDB is NoSQL database that stores data as key-values. LevelDB allows for basic operation such as get, put

and delete to be performed on the blockchain. Keys and values can be any byte array and not just strings. By

default, LevelDB is used by the blockchain and is appropriate when ledger states are simple key-value pairs.

 85

CouchDB is also a NoSQL database that stores data as a JSON documents. This is more suitable for my

application as data will be sent from the react web application to the node.js server as JSON object.

Furthermore, Node.js makes working with JSON object simple. In addition to this CouchDB supports the rich

queries and update of richer data types often found in business transaction. Implementation-wise, IBM

Blockchain Platform allows for CouchDB can be enabled as the ledger’s database.

Figure 42 is a diagram that represents the objects stored the CouchDB database.

Figure 42: Diagram showing Objects in CouchDB Database

As shown in Figure 42, the CouchDB database will store two types of main objects:

User – The purpose of the User object is to store the login credentials and personal information of the users

using the application, such as their email, password, first name, last name, account type (Student or Admin)

and privileges (1,2 or 3). A description of the User Object’s attributes are as follows:

• Email: is the unique ID for a User Object, and will be required to log the user into the system.

The email attribute must be a valid email address.

 86

• Password: is a secret string known only to the owner of the account. It will be required to log

the user into the system.

• FirstName: is a string containing letters only which holds the account owners first name.

• LastName: is a string containing letters only which holds the account owner’s last name.

• AccountType: is a string that can either be Student or Admin. The account type will

determine what pages on the system the user has access to (see Chapter 5 Security

Analysis).

• Privileges: is an integer that can either be 1,2 or 3. The privilege of an account will determine

what the user will be able to do on the system, for example an admin with a privilege of 3

will be able to delete accounts. (See Chapter 5 Security Analysis).

Election – The purpose of the Election object is to store information about elections created by Admins. This

information includes: electionId, electionName, electionDescription and election type, start date and end

date. The Election object will also consist of multiple AGMContest objects (see below). A description of the

Election object’s attributes are as follows:

• ElectionId: is the unique ID for an Election Object. The electionID is generated by the system.

• ElectionName: is a string containing letters. It will hold the name of the election, which will

be displayed on the User’s voting screen.

• ElectionDescription: is a string containing letters and spaces. It will hold the name of the

election short description of the election.

• ElectionType: is a string that can only be set as AGM. This attribute was created because in

future iterations of the application other types of election can be implemented.

• StartDate: is a string in the format DD-MM-YYYY. It is used to hold the intended start date of

the election.

• EndDate: is a string in the format DD-MM-YYYY. It is used to hold the intended end date of

the election.

• AGMContests: See below

Figure 42 shows that the CouchDB database also stores three types of embedded objects (objects that are

stored within other objects). This includes:

 87

AGMContest – The purpose of the AGMContest object is to store details about an election contest. These

details include: contestID, contestName, contestDescription, contestLink, candidates, ballotBox(see below),

showResults and electionStatus. The AGMContest is an embedded object as it is stored within the Election

object. An AGMContest can only below to one Election object. A description of the AGMContest object’s

attributes are as follows:

• ContestId: is the unique ID for a Contest Object. The electionID is generated by the system.

• ElectionId: is the election that the ballotBox embedded in.

• ContestName: is a string containing letters. It will hold the name of the election contest,

which will be displayed on the User’s voting screen.

• ContestDescription: is a string containing letters and spaces. It will hold the name of the

election short description of the election contest.

• ContestLink: is a string denoting the URL link to the election contest, this is a combination of

the electionId and contestName. This will be used to generate a barcode of an election.

• Candidates: is a list of candidates in the election contest. Each candidate will have a name,

email and id. A student will be able to cast their vote for one of the three candidates.

• ShowResults: is a Boolean value that is either true or false. If it is false that means that only

the administrator can see the results of the election. If it is true that the election results are

available to all users.

• ElectionStatus: is a string that can either be closed, open or ended. When an Election contest is

created, it is set to closed by default. This means students cannot vote in the election or view

the results. If the electionStatus is set to open then students are permitted to vote in the

election contest. If the electionStatus is set to ended, the student will not be permitted to

cast anymore votes, but they will be able to see the results of the election if showResults is

set to true.

• Ballotbox: See below.

BallotBox – The purpose of the BallotBox object is to store details about votes cast in an AGMContest. These

details include: electionId, contestId, votedStudents and ballots. The ballotBox is an embedded object as it is

stored within the AGMContestObject. A Ballot Box can only belong to one AGMContest object. A description

of the BallotBox object’s attributes are as follows:

• ElectionId: is the election that the ballotBox embedded in.

• ContestId: is the AGMContest that the ballotBox embedded in.

 88

• VotedStudents: a list containing the emails of the student who have voted in the election.

This is used to keep track of all the student who have voted, which prevent students from

voting more than once.

• Ballots: A list of ballots cast in the AGMContest. Each Ballot has a caster (the email of the

person who cast the vote) and a candidateId (the id of the candidate the student voted for.

5.4.2 Smart Contract Design

Smart contracts are transactions that can be invoked to perform actions on the blockchain. In other words, it

is the business logic that allows the Node.js server to execute request and append data to the blockchain

ledger. As shown in Figure 41, the Smart Contract will run on the Voter Peer. In Hyperledger multiple smart

contracts can written, however they will have to be packaged into chain code before they can be deployed

onto the application. JavaScript was selected as the language in which the smart contract would be written

this is because the Node.js server is also written in JavaScript, allowing for an easier learning curve.

To keep things simple all functions that queried and appended data to the blockchain were written in a single

file. In addition, four classes representing the objects that would be stored in the CouchDB database will be

produced. More information about how the smart contracts were produced can be found in the

implementation section.

5.5 Design Challenges
Aspects of designing the E-Voting system proved more challenging than others. These challenges include:

Structuring of JSON Objects: As explained above CouchDB will be used to store data on the Blockchain and

will therefore act as the E-Voting Systems primary database. Because CouchDB is a noSQL database that uses

stores data in JSON documents it was difficult to model the various objects that the Blockchain would need to

store and the relationships between these objects. After reading CouchDB documentation, it appeared that

relationships could be established between two objects by embedded one object within another. Once this

had been discovered modelling the database become easier.

Designing Security Controls: The security controls outline in Chapter 6: Security Analysis were originally

were difficult to come up with. It was only after conducting a risk assessment of the proposed design that

security flaws were identified. With that said, it is difficult to mitigate all against possible attacks to the

system because attacks can change and become or sophisticated overtime. Indeed, there are simply too

many unknown, unknowns to deal implement an application with no security flaws. Furthermore, it is

 89

through the application been breached by an attacker that can allow for better security controls to be

developed. However, taking into consideration that the E-Voting system is operating in a low threat

environment the security control outlined in Chapter 6: Security Analysis protect against common attacks to

web applications.

Inability to use Surrey365: It was originally indented for all users of the application to be able to authenticate

themselves using Surrey365, a Microsoft service that allows students and staff members at the university of

surrey to login application such as Outlook and SurreyLearn with a single set of login credentials. This would

have transferred the responsibility of securely storing user credentials to the University. In addition, using

Surry365 would have mean that a user management system would not have needed allow for more time to

be spent working on other aspects of the system. Unfortunately, the IT Department would not grant my

application access to Surrey365, meaning that a user management system had to be implemented with

necessary security criteria.

Chapter 6: Security Analysis

This chapter seeks to analyse the security risks and threats the proposed E-Voting system is vulnerable to, as

well as detail how security will be built into the application.

6.1 Introduction
While the E-Voting Application will function in a low threat environment, it is still important to identify any

potential security threats that could compromise the system. The security goals of this project are based on

the CIA triad:

• Integrity: is achieved when data remains consistent, unaltered and uncorrupted while being

transmitted, processed or stored. The most valuable asset that the E-Voting system will

transmit is how a student has voted. If vote can be altered during transmission the whole

election will be liable to disputes by disgruntled candidates. This makes integrity the most

important security goal.

• Confidentiality: is achieved when data stored and processed by the E-Voting system is

protected from disclosure or exposure to unauthorized individuals. The E-Voting system will

store and process users’ personal information such as their email, full name, passwords and

casted vote. Furthermore, as stated in the literature review a fundamental principle of free

and fair elections is that votes are confidential. Other sensitive information such as the

 90

election results must also be kept confidential by the system until the election officer

decides to reveal the results. To achieve confidentiality users’ personal information will be

stored in an encrypted database, a hierarchy of access privileges will be established and

JSON Web Tokens will be implemented. This means that only those authorised will be able to

access certain information stored by the system. This is the second most important security

goal because if the system lacks confidentiality, then students are unlikely to use the

application in fear that their personal information and casted vote will be exposed.

• Availability: is achieved when the E-Voting application is available at all times. Furthermore,

data must also be accessible and correctly formatted for use without interference or

obstruction. The E-Voting system must allow students to login and vote whenever they want,

as long as the election is still open.

6.2 Blockchain Security
As stated in Chapter 2: Research using a blockchain to store data provides a multitude of security properties.

For example, using a blockchain guarantees integrity as data is stored in sequential blocks meaning that data

in the ledger cannot be changed without detection. In addition to this because Hyperledger is a private

Blockchain, a public key infrastructure is used to ensure request to the Blockchain are from validate parties.

6.2.1 Public Key Infrastructure

Hyperledger Fabric uses a public key infrastructure to communicate with authorised parties. The Blockchain

will only accept transactions invoked by requests that have been signed by a valid private key. The certificate

authority is responsible for enrolling new identities into the blockchain. As shown in Figure 43 a certificate

consists of a private a public key.

Figure 43: Diagram of Certificate Authority

 91

In the E-Voting application when a new user is created a script is run that asks the certificate authority to

create a private and public key for the users. These keys will be added to a wallet stored on the server.

Whenever the server wishes to invoke a transaction onto the blockchain, the transaction will need to be

signed by the private key of the user, which will be stored in the wallet directory. If the signature is not valid

then the blockchain will reject the transaction.

In addition, because HTTPS is used to send data between the blockchain database and the node.js server an

adversary will have a difficult time incepting data transmitted.

6.3 Risk Assessment
Risk assessments are a great way to identify potential risks to the system before development begins so that

necessary controls can be built in to the system to mitigate the risks. The risk assessment below will focus on

ensuring data sent from the react web application to the node.js server is secure.

The methodology used to conduct risk assessment in this project is the BS ISO/IEC 27005:2011. The latest

version released in ISO/IEC 27005:2018 was not available without paying a fee.

Furthermore, the risk assessments will have three stages:

1. Risk identification – identifying risks to the system

2. Risk assessment – calculating the chance and gravity of each identified risk

3. Risk control – finding solutions that can be implemented to mitigated the identified risks

6.3.1 Risk Identification

To correctly identify the risk to the application the applications assets, threats and vulnerabilities must first

be identified.

6.3.1.1 Asset Identification

The table below shows a list of assets the application is anticipated to have.

Ref Asset Type Description

A1 User credentials Information The users’ credentials such as user passwords which are stored in

a Hyperledger blockchain

A2 Casted Votes Information The candidate students have voted which is stored in a

Hyperledger blockchain

 92

A3 Election Results Information The results of the election which is stored in a Hyperledger

blockchain

A4 Node.js Server Network The Server where API requests sent from the react application are

sent to the Hyperledger blockchain

A5 React Web

Application

Software The client-side of the application

6.3.1.2 Identification of Threats

A threat is an unwanted incident, which may result in harm to an application. The table below lists the

potential threats to the E-Voting application (identified above).

Ref Threat Description

T1 Data theft from Blockchain An attack agent could gain access to data

stored within the blockchain such as user

passwords and casted ballots. This could

happen in a multitude of ways for example

by intercepting data in transmission.

T2 Endpoint Attack An attack agent could invoke an endpoint if

the endpoint URL is known allowing them

to perform CRUD operations on the

blockchain without the necessary

permissions.

T3 DOS attacks The server may be brought down due to

high volumes of network traffic.

T4 Semantic URL attack An attack agent that is a user could gain

access to data and restricted pages of the

application by altering the URL in their web

browser.

T5 Packet Sniffing An attack can intercept data sent between

the client react application and the node.js

server.

 93

6.3.1.3 Identification of Vulnerabilities

A vulnerability is a weakness of an asset that can be exploited by a threat. Since the goal of the project is

allow the USSU to conduct elections, a vulnerability is anything that hinders this.

The table below shows the vulnerability of each identified asset and the consequences to the system.

Ref Vulnerability Incident Scenario Consequences

V1. Un-hashed/unencrypted

sensitive data

An attacker gains access

to blockchain database.

Sensitive data such as

election results, a user’s

password and ballots can

be obtained by an attacker,

bring the integrity of the

election into question.

V2. Exposed Endpoints in

node server

An attacker uses the API

endpoints URL to access

confidential resources.

One potential consequence

is that election results,

which are sent to the react

application can be obtained

before they are released

which can influence the

election.

V3. No contingency to handle

network server downtime

An attacker conducts a
DOS attack on network
servers

Some students may not be

able to vote in the election,

which will bring the fairness

of the election into

question.

V4. Unprotected Routes Students logs in and

changes URL in order to

get access to pages

restricted to

administrators

Unauthorised users will be

able to perform

administrative tasks that

can influence the outcome

of the election.

 94

V5. Insecure Channel An attacker can intercept

data being sent from the

React Web Application to

the Node.js server

Sensitive data such as, a

user’s password and ballots

can be obtained by an

attacker, bring the integrity

of the election into

question.

6.4 Risk Analysis
In the absence of quantitative data, a qualitive risk assessment will be conducted to assess the level of impact

the identified vulnerabilities will have on the E-Voting system’s ability to run elections.

The table below shows the impact of each identified vulnerability if it is successfully exploited along with the

likelihood of it occurring. Since this is a qualitive risk assessment a justification is provided as to why a

vulnerability was given a level. The likelihood and impact are ranked on a scale of (LOW, MIDIEUM and

HIGH). Figure 44 is the matrix that shows the overall risk severity based on the impact and likelihood.

Figure 44: Probability Impact Chart (OWASP, 2016)

Ref Impact Likelihood Justification Overall

Risk

V1. HIGH LOW Impact – A high level of impact was given because if an

adversary is able to get access to the blockchain they would be

MEDIUM

 95

able to obtain a user’s credentials allowing them to log in and

vote on their behalf. This defeats the whole point of the election

as every student should be given a single vote.

Likelihood – A low likelihood was given because the Hyperledger

Blockchain is a private Blockchain meaning that it is extremely

difficult/ impossible to breach.

V2. MEDIUM LOW Impact – A Medium impact level was given because while third

gain access to the election results is not ideal, it is unlikely to

influence voting behaviour on a massive scale.

Likelihood – A low likelihood was given because an attack is

unlikely to know the names of the endpoints.

LOW

V3. MEDIUM LOW Impact – A medium impact level was given because a DOS attack

would not alter the votes that have already been casted in the

election. However, it will cause disruptive and frustration to

votes. Therefore, not having a contingency plan to handle

network server downtime will mean some students will be

unable to vote.

Likelihood – A low likelihood was given because the E-Voting

system is operating in a low threat environment. Elections at the

USSU are low stake therefore it is unlikely someone will execute

a DOS attack.

LOW

V4. HIGH MEDIUM Impact – A High impact was given because if the student is able

to gain access pages only meant for administrators, they will be

able to make changes ongoing election and cause damage to the

system.

Likelihood – A medium likelihood was given because although a

user is unlikely to know the URL of an admin webpage it will not

be difficult for them to guess.

HIGH

V5. HIGH Low Impact – A High impact was given if an attacker is able to get

access to data being sent between the react web application

and the node.js server, the attack would be able to obtain the

passwords of student and administrators. This will give them

unauthorised access to the system, in which they will be able to

do significant damage.

MEDIUM

 96

Likelihood – A low likelihood was given because the E-voting

system is operating in a low threat environment it is unlike that

student trying to influence the election would have access to the

tools required to incept data in transmission.

6.5 Risk treatment
With all the vulnerabilities identified and ranked in terms of overall risk, it is now possible to propose ways in

which to tackle the identified risks. Generally, there are four ways risk can be treated:

• Risk modification – eliminate the risk through controls.

• Risk retention – choosing to accept the consequences of the risk.

• Risk avoidance – Removing the asset entirely so that the risk does not continue to exist.

• Risk sharing – outsourcing the risk so that it become the responsibility of a third party.

Risk Controls

The table below shows the controls that will be implemented to eliminate all the vulnerabilities.

Ref Control Strategy Description

C1 JSON Web Tokens

(cookies)

Risk modification Json Web Tokens will be used to ensure that

only though with authorised can access data

from endpoints.

C2 Protected Routes in

React

Risk modification Protect Routes is a library in react that can

be used to restrict users without

authorisation from certain pages. This can

be to prevent student users from access

pages restricted to administers.

C3 Hashing of Password Risk modification Passwords will be hashed using library

BCrypt when new users are registered.

C4 Third party hosting and

maintenance

Risk sharing The React Web Application will be deployed

using Netlify and the server will be deployed

using Heroku. Heroku has its own

 97

contingency plan to handle network server

downtime as well as DOS protection.

C5 Using HTTPs Risk modification The domain for both the client and node.js

server use HTTPS to transfer data. This

makes it more difficult for attackers to

intercepted data.

C6 Using CORS in node.js

server

Risk modification CORS which stands for Cross-Origin

Resource Sharing is a JavaScript library that

can be used to set a specific domain that the

server will accept requests from. This will

prevent requests to the server that do not

come from the domain of the react

application.

The controls outlined in the table above, provide a sufficient level of security to the system and ensures CIA is

not breached. In Chapter 8: System Testing these security controls used to test against the produced E-

Voting system to ensure the system has a good level of security.

6.6 Security Design
This section will discuss how authentication, authorisation and access tokens will be implemented to ensure

the system has a good level of security.

6.6.1 Authentication

Before being able to use the E-Voting system, the user must log into the system with a created account. As

explained in Chapter 3: Problem Analysis the IT department have not granted this project access to

Surrey365, which is used to authenticate students at the University of Surrey. Furthermore, the USSU have

agreed to lobby the IT department, once a functioning system is up and running. Therefore, election officers

will be required to create accounts on the system, this is to prevent individuals from outside the university

creating accounts and voting in the elections. Once the IT department grants the E-Voting system access to

Surrey365, it will be used to authenticate users.

 98

 To create an account successfully the election officer will need to enter:

• The User’s first name

• The User’s last name

• The type of User (Student or Admin)

• The user’s Email, which must be a valid email and cannot already exist on the system.

• The user’s Password. Passwords are required to be at least 10 characters long with at least one

uppercase key and one symbol. A 10-character password provides a good level of security as it takes

over 500 days to crack. This ensures that passwords are not susceptible to brute force attacks by an

adversary. In addition to this, passwords will be salted and hashed before being stored onto the

blockchain making it more difficult for an adversary to discover a user’s password. To prevent the

election officer from knowing the password of all created accounts, users of the application will be

able to change their password once logged in by entering their existing password followed by their

new password.

• The user’s Privileges from 1 to 3 (see 6.6.2 Authorisation).

6.6.2 Authorisation

All users will need to login with their correct email and password to use the system. If the user is a student,

then they will be restricted from viewing pages meant only for admins. Likewise, admin users will not be able

to access the voting page (as they are not students and should not be allowed to vote in elections).

While administrators will have access to all admin pages, the E-Voting system will have a hierarchy of access

privileges. Without a certain privilege level administrators will be unable to perform some actions. The

following details what an administrator can do at each privilege level (the actions outlined below corresponds

to the Synopsis in the requirement specification):

• Level 1: Users with this privilege level will be able to Create AGM contests, Edit AGM contests, Start

AGM Election Contests, End AGM Contests and Make AGM Results Visible. This is the lowest level an

administrator can have and will be expected to be given to PTOs.

• Level 2: In addition to everything mentioned in level 1 users with this privilege level will be able to

Create AGM Elections, Edit Created AGM Elections. This level of privilege will be expected to be given

to USSU staff members.

• Level 3: In addition to everything mentioned in level 1 and level users with this privilege level will be

able to Create Student Account, Create Admin Account, Delete AGM Elections, Change Admin

 99

Privileges and Enable Student verification. This is the highest level an administrator can have and will

be expected to be given to the election officer.

If the user attempts to perform an action and do not have the correct privilege the server will unauthorised

user error. This can be done in an Node.js server by verifying requests before executing an endpoint.

In addition to this, all student account will be restricted from access administrative pages. This will include all

pages that are used to create and configure elections. The application will know what privilege the user has

based on their access token created by the user when they logged in (see Access token section for more

information). Restricting certain pages from students can be done using protected routes in react.

6.6.3 Web Tokens

Tokenisation is the process of transforming data into random strings of characters that cannot be decoded by

an adversary. JSON Web Tokens (JWT) can be used in order to grant authorisation to users.

When a user logs into their account a new JWT will be generated on the node.js server. This token will be

sent back to the client as a HTTP cookie. Whenever the user makes a REST call to the server the HTTP only

cookies will be included in the request. Using HTTP only cookies over normal cookies provide an extra level of

security. This is because unlike normal cookies, HTTP cookies cannot be accessed by the client-side using

JavaScript. Without this, an adversary could launch a XSS attack using “document.cookie” to get a list of

stored cookies. When a request arrives at the node.js server, the endpoint will check that a valid token with

the correct privileges has been sent with the request. This will be done by utilising node.js middleware which

allows for functions to be run before an endpoint executed.

JWT and Cookies must have a set expiration date. After the set expiration date, the JTW will fail the

verification process carried out by the node.js server. This will make it more difficult for an adversary to

abuse the system in the event that they gain access to a JWT. In addition, when the cookie expires the user

will be automatically logged out of the E-Voting system. They will need to login again to gain access to a

validate JWT. Furthermore, due to the sensitivity of the system expiration duration of 30 minutes was

chosen. This means that every 30 minutes users will be required re-login to their accounts to re-authenticate

themselves.

The use of HTTP only cookies means that the E-Voting system is susceptible to cross-site request forgery

attacks (CSRF). A CSRF attack is one in which a user is duped into performing some action in an app that they

 100

are currently logged into. If an attacker is able to get the user to make a request to that app (often without

the user knowing it), the browser will automatically send its cookies, and thus the attack will be very possible.

The best way to mitigate against this attack is to set up an endpoint that sends a csrf token to the client as a

cookie. The client will then need to add the csrf token to headers of requests sent to the node.js server.

Chapter 7: Implementation

This section will give an overview of the E-Voting system produced in this project. A demonstration of the

working solution can be found in the video presentation submitted with this report.

7.1.1 Repository Overview

The entire code for this application was submitted along with the project. Below is a short description of the

contents of each directory.

Figure 45 shows the directory if the React Web Application.

• AdminDashboard – contains the code for the Admin Dashboard Page

• Context – contains the code for the UserContext that is wrapped

around most components of the react application (see high order

components).

• Election – contains the code for the Pages relating to Voting in

elections

• Header – contains the code for the navigation bar

• Login – contains the code for the login Pages

• ManageAccount – contains the code for the Pages relating to

managing account in the system

• ManageElection – contains the code for the Pages relating to

managing elections in the system

• ProtectedRoutes – contains the logic behind Protected Routes in the

application (see high order components)

• Public – contains the components and functions that will be used by

other components in the application

• Api – contains the functions that will call the endpoints in the node.js

server

• Images – contains the images that will be used in the application

Figure 45: React Web Application
Repository

 101

Figure 46 shows the directory if the React Web Application.

• Election – contains the endpoints relating to voting in and

managing elections.

• HyperledgerFabric – contains the code that connects the

node.js server to the Hyperledger blockchain.

• Login – contains the endpoints required to login to the

System.

• Middleware – contains code that will be run before an

endpoint is executed.

• User – contains the endpoints relating to voting in and

managing elections.

• Wallet – contains the public and private keys of users in

the system, which will be used to connect the node.js server to the Hyperledger blockchain.

7.2 Important Aspects
This section draws attention to the main aspects of

the system. These aspects include:

Chain code queries: Since data from the blockchain is

utilised through the E-Voting application, it was

important that a generic set of functions were

produced to allow other functions in the chain code

to easily request data from the blockchain. Figure 47

below shows the reusable code that can be used to

query the two types of objects (User and Election)

stored on the Blockchain. Since CouchDB stores data

in JSON documents the SELECTOR function was taken

advantage of.

Vote Storage and Counting: A BallotBox is an object

that is embedded into the Election object. Within the

BallotBox object there exists a list of ballots. Each

ballot will contain a user’s email along with who they

voted for. Figure 48 is an example of a BallotBox

object (stored in a JSON format). In addition to this,

the BallotBox object will keep a list of students that

have voted, to prevent students from voting more

Figure 46: Node.js Repository

Figure 47: Chaincode Query Function

Figure 48: BallotBox stored in JSON

 102

than once. If a user requests to view the results of an election and are authorised to do so, the BalloxBox

object for the AGM Contest will be sent to the node.js server. The server would then add up the ballots given

to each candidate sending the results back to the react web application to be displayed. Figure 49 shows the

code used to count the ballots in a BallotBox.

Figure 49: Function that tallies the votes in the BallotBox

Protected Routes: Protected Routes were implemented to prevent students from gaining access to admin

pages by changing the URL of the web page. The react web application has three types of protected Routes,

StudentRoutes which are routes meant only for student users, AdminRoute which are routes meant only for

administrators, and LoginRoute routes which can only be accessed if the user is not logged in. In the event

that a user tries to gain access to a restricted page they

will be redirected to their dashboard (if they are logged

in) or the login page if they are not logged in. Figure 50

is an example of a component wrapped in AdminRoute.

Node.js Structure: The node.js server was implemented in a way to allow for logic across the server to be

shared. This was done by producing a Utilities file for every route file. Endpoints in a route file will call

functions in their respective Utilities. This mimics the model-view-controller architecture in terms of

providing a clear code structure. Furthermore, structuring the express server this way allowed for the code

based to be better navigated, as the majority of logic for each route file was constrained in one file.

Figure 50: ManageElection Page wrapped in Protected
Routes

 103

7.3 Deployment
The application was deployed using Netlify (for the react web application) and Heroku (for the node.js

application). In addition the domain name myvote.code was obtained freely and used for the application.

Netlify and Heroku both provided SSL certificates allowing the web application transmit data using HTTPS.

The smart contracts were deployed using IBM Hyperledger Blockchain. Figure 51 is an overview of the

Blockchain network.

Figure 51: Hyperledger Fabric Blockchain in IBM Cloud

7.4 Technical Challenges
This section highlights the main technical challenges incurred when creating the E-Voting Application.

Chaincode & Hyperledger Fabric: Writing Chaincode was one of the most challenging aspects of

implementing the system. Although it was written in JavaScript, the same language as my node.js server

there were a limited number of examples available demonstrating how Chaincode should be written. In

addition, learning the intricacies of Hyperledger Fabric such that its full capabilities could be harnessed ate

into development time. This was mainly due to Hyperledger Fabric being a niche project within blockchain.

 104

Protected Routes: Implementing protected routes was challenging as it required an understanding of

complex react concepts. More specifically understanding how high-order components worked in react took a

while to grasp. However, thanks to react being a popular framework there were many examples and tutorials

out there showing how protected routes could be implemented.

Code Quality: When implementing a web application rarely is there a single way to achieve a desired

outcome. Therefore, due to being new to react and node.js, many components and functions that work

correctly could have been implemented in a way that is considered bad practise. In addition, the time

constraints of this project meant that good practises such as code commenting and documentation were

deprioritised over completing all of the functional requirements. This will have to be address after the project

is completed, as time will no longer be an issue.

 105

Chapter 8: System Testing

During the development of the system tests were written to ensure that the system worked as intended. In

addition to this a real AGM election was run using the produced application (UAT Testing). This section will

cover all the aspects of the testing that was conducted. This will include: unit Testing, cross-device testing,

functional testing, non-functional testing, security testing and user acceptance testing.

8.1 Unit Testing
Unit Tests are used to test individual methods. It is important that all the lines of code within the method are

tested. This can be measured by looking at the test coverage of the application. NYC, a node package, was

used in this project to measure the test coverage of the application.

There are three main approaches to unit testing:

White Box Testing – The goal of white box testing is to test all statements and branches. The main advantage

of this approach is that the system is thoroughly tested. However, the main disadvantage is that the tests

take longer to write, and require more knowledge of the innerworkings of the code base.

Black Box Testing – Involves testing the outputs of the methods, as opposed to the innerworkings of

methods. The goal of these tests is to ensure that the correct values are outputted given the appropriate set

of input values. Furthermore, tests can be written with little knowledge of how the code inside the method

works. The main advantage of this approach is that black box tests are less complex to write when compared

to white box testing, and they take less time to write. The main disadvantage of these tests is that it is easy to

miss edge cases.

Grey Box Testing – Is a hybrid of the two approaches explained above. Under this approach Black box tests

are written with an understanding of the interworking of the method. With a proper understanding of the

method being tested the developer will be able to test that the edge case is being missed in Blackbox testing.

White box testing was used to test the system developed in this project. Due to the time constraints of this

project and the lack of experience writting tests this was the most comprehensive approach. The following

libraries were employed to write the tests:

• Mocha – is a feature-rich JavaScript test framework, making it easier to write asynchronous testing

• Sinon – is a standalone testing framework that allows test spies, stubs and mocks for JavaScript.

• Chai – is an assertion library for node that can be paired with any JavaScript testing framework

 106

8.1.1 Node.js Sever

Unit tests were written for every function within the Node.js API in order to achieve 100% test coverage.

Figure 52 is an example of a unit test that was written for the node.js server. The unit test was written to

check that the isPasswordCorrect function works as intended. The isPasswordCorrect function returns true if

a password in plain text is equal to a hashed password, and false if otherwise.

Figure 52: Unit Test Example for PasswordIsCorrect Function

Figure 53 shows the test running successfully, as you can see all 53 tests pass.

Figure 53: Results of running all server-side unit tests

Test coverage is split into four different categories, with each category representing a different aspect of unit

testing. These categories include:

 107

• Statements (Stmts) – Measures the percentage of statement that have been executed by the tests

• Branch – Measures the percentage of paths in a control statement that have been executed. For

example, have both true and false paths been executed by the tests.

• Function (Funcs) – Measure the percentage of function that have been tested.

• Lines – Measures the percentage of lines that have been executed by the tests.

As shown in Figure 54 the average percentage of statement coverage (Stmts) is 90% with the lowest file

network.js being 82%. The main reason why 100% statement coverage could not be achieved is because

certain function cannot be invoked within a testing environment. For instance, statements in the network.js

file are wrapped in a try catch error, in the event that there is an error when trying to connect to the

blockchain. This is not something that can be replicated in a testing environment, for two reasons. Firstly, the

error/problems that can occur when connecting to the blockchain are vast and uncontrollable. Secondly,

there is no way to intentionally throw an error when connecting to the blockchain ledger.

Figure 54: Test Converge of Server-side code

Figure 54 also shows the function coverage and the line coverage which both averaged 95% and 90%

respectfully. The LoginUtilities had a function coverage of 66.7% an anomaly in comparison to the other file.

The cause of this low score is due to a bug with the function bcrypt.compareSync which is called within the

isPasswordCorrect function. The NYC package counts bcrypt.compareSync as a function but fails to track its

execution. This issue has been raised on several forum such a stack overflow [43]. Therefore, the function

coverage of loginUtilities is actually 100%. With that being said the function coverage and Line coverage still

 108

fall below 100%. This is because the code within the catch branches is not being executed (for the same

reasons explained above).

Lastly Figure 54 shows the branch coverage is 63.89%. This is incredibly low, and can mostly be attributed to

the code within catch branches not being executed. In addition, time constraints meant that it was difficult to

write tests that covered all branches of code.

8.1.2 Chaincode (Smart Contracts)

Unit tests were also written for the chain code (smart contracts), to ensure that they function as intended.

Figure 55 shows an example of a test that was written to test the createUser within the smart contract of the

E-Voting application. The test checks that the smart contract can successfully create a user given the

necessary parameters. The function is expected to return a message and the email of the newly created

election.

Figure 55: Chaincode Test example for a Creating User

As shown in Figure 56, all thirty tests that were run for the smart contract pass successfully.

Figure 56: Test Coverage of Chaincode

 109

As shown in Figure 57 the average percentage of statement coverage (Stmts) is 98% with the lowest file

smartContract.js being 93%. The reason why 100% coverage was not achieved for the smartContract.js file is

because code within a catch statement is not being executed.

Figure 57: Evidence of Chaincode Test coverage

Figure 58 shows that every function within the smart contract except 1 is covered by the tests written. The

function that has not been covered is called updateContest. Unfortunately, it cannot be tested because in

order to run successfully it must be able to query the blockchain (which cannot be done in a test

environment).

Figure 58: Evidence of Chaincode Test coverage (Functions and Lines)

Lastly, Figure 59 shows that branches medium level of branch coverage. The main reason for a low level of

branch coverage is that certain aspects of the smart contract cannot be tested in a testing environment. In

addition to this time constraints did not allow for alternative ways to test the various branches of the smart

 110

contract to be explored. UAT testing and requirements testing will be able to cover the areas missed by the

unit tests.

Figure 59: Evidence of Chaincode Test coverage (Branches)

In summary, a high level of test coverage has been reached for both the node.js server and the chain code

(smart contracts). This means that the Node.js server as well as the chain code can be trusted to function as

intended. The code that could not be covered by the unit tests will covered during requirements testing and

UAT testing. Indeed, it would be sensible to explore ways to test the uncovered branches at a later date.

8.2 Cross-Device Testing
The purpose of Cross-Device testing is to check that the application looks and runs properly on all intended

platform.

As stated in Chapter 5: Design the application needs to be mobile responsive as users are expected to use

the application via their smartphones.

The following figures show the main pages of the application on both androids, iPhone and desktop

browsers. As shown in Figures 60 the application looks consistent across all platforms. In addition, users can

use all the features of the application regardless of the platform.

 111

Figure 60: Admin Dashboard on iPhone(right), desktop(middle) and Android(left)

8.3 Requirements Testing
The purpose of requirements testing is to test that the application produced meets the criteria set out in the

requirements specification Chapter 4: Requirements. This includes both functional and non-functional

requirements.

The tables below show the results of testing the application against the functional and non-functional

requirements. The application was able to meet all of its functional and non-functional requirements. A

working solution of the application was demonstrated to the supervisor of this project. He can testify to the

accuracy of the testing matrix below. In addition to this a working solution of the application was

demonstrated in the video presentation submitted with the project.

8.3.1 Functional Requirements Test Matrix

ID Synopsis Description
Status

Android IOS Desktop

FR1 Log in to
account

All users of the application must be able
to log into their account using valid
credentials.

PASS PASS PASS

FR2 Log out of
account

All users of the application must be able
to log out of their account PASS PASS PASS

 112

FR3 Create Student
Account

Election Officer(s) must be able to
create new Student accounts, with a
first name, last name, email, password
and privilege.

PASS PASS PASS

FR4 Create Admin
Account

Election Officer(s) must be able to
create new Admin accounts, with a first
name, last name, email, password and
privilege.

PASS PASS PASS

FR5 Change
Password

All users must be able to change their
own password. PASS PASS PASS

FR6 Create AGM
Election

Election Officer(s) and USSU staff must
be able to create elections with an
election name, description, start and
end date.

PASS PASS PASS

FR7 Edit AGM
Created
Elections

Election Officer(s) and USSU staff must
be able to edit the attributes (name,
description and date) of a created AGM
election.

PASS PASS PASS

FR8 Delete AGM
Elections

Election Officer must be able to delete
any election on the system. PASS PASS PASS

FR9 View all
Elections

Election Officer(s) must be able to view
all created elections on the system PASS PASS PASS

FR10 Create AGM
contest

Election Officers, USSU staff and PTOs
must be able to create AGM contests.
Each contest must have a contest
name, description(optional), list of
candidates.

PASS PASS PASS

FR11 Edit AGM
contest

Election Officers, USSU staff and PTOs
must be able to edit the attributes
(name, description and list of
candidates) of a created AGM contest.

PASS PASS PASS

FR12 Start AGM
Election Contest

Election Officer(s), USSU staff and PTOs
must be able to start the contest,
making it available for students to vote
in.

PASS PASS PASS

FR13 Generate QR
code

The system must be able to generate a
unique QR code for each AGM contest PASS PASS PASS

FR14 Generate Voting
link

The system must be able to generate a
unique voting link for each AGM
contest

PASS PASS PASS

FR15 Access AGM via
QR code

Students must be able to access the
election by using their device to scan
the QR code of the election or by using
the voting link

PASS PASS PASS

 113

FR16 Vote in AGM
Election contest

Students must be able to cast a vote for
a candidate in the AGM election.

PASS PASS PASS

FR17 Record Votes to
Blockchain

Votes casted in the election by students
must be stored in the system's
Hyperledger blockchain

PASS PASS PASS

FR18 Tally all votes
correctly

The system must be able to count all
votes for each candidate correctly. PASS PASS PASS

FR19 Change Admin
Privileges

Election Officer(s) must be able to add
and remove administrative privileges
from USSU staff and PTOs.

PASS PASS PASS

FR20 End AGM
Contest

Election Officer(s), USSU staff and PTOs
must be able to end AGM contests,
stopping new students from voting. PASS PASS PASS

FR21 Make AGM
Result Visible

Election Officer(s), USSU staff and PTOs
must be able to make the results of an
AGM contests, visible to students PASS PASS PASS

FR22 View AGM
Results

All users must be able to view the result
of an AGM contest. PASS PASS PASS

FR23 Verify Vote Students must be able to verify that
their vote was counted correctly by the
system

PASS PASS PASS

 114

8.3.2 Non-Functional Requirements Test Matrix

ID Type Description Status

NFR1 Performance Request from users to the server must be carried out in a

reasonable amount of time. Additionally, the application should

use loading icons when pages are being loaded.
Pass

NFR2 Accuracy User-input must be validated by the system to ensure the data

submitted is in the correct format, for example: name fields can

only accept an input consisting of letters.

Pass

NFR3 Software quality The UI must be intuitive and user friendly. The UI has a constant

theme, style and colours. For example, the buttons and fonts are

the same across the application.

Pass

NFR4 Software quality The UI must response to invalid inputs into the system in a clear

way.

Pass (see

validation

testing)

NFR5 Security The system must comply with the data protection act (2018) and all

the security controls outlined in Chapter 6: Security Analysis must

be implemented.

Pass (see

security

testing)

NFR6 Security Only the specified User Class (with the correct privileges) should be

able to perform the functional requirements assigned (Chapter 6:

Security Analysis).

Pass (see

security

testing)

NFR7 Reliability All users should be able to use the system at any hour in the day, 7

days a week.
Pass

NFR8 Semi-privacy All student votes and personal information should be kept

confidential(full-privacy). If the Election officer decides enable

verification, students should be able to verify how they voted(semi-

privacy).

Pass

NFR9 Communication All three components of the system must be able to communicate

with each other. More specifically, the React web application must

be able to send requests and receive responses from the node.js

server, and the node.js server must be able to send requests and

receive responses from the Hyperledger Blockchain.

Pass

 115

8.3.3 Validation Testing

The purpose of Validation Testing is to ensure that the UI only acceptance valid inputs from the user.

The application has a total of three forms, one for creating new users, one for creating elections and one for

creating AGM contests. Figure 61, is an example of what happens if the user attempts to create an election

with invalid inputs. Screenshots showing this for the Create AGM contest page and create User page can be

found in Appendixes under validation test screenshots.

Figure 61: Example of invalid fields for creating an Election

The table below shows the outcome of each validation test (Appendixes for evidence).

Field Name Validity conditions Status?

Create Election Form

Election Name Letter only with spaces allowed Pass

Election Description
Letter only with spaces allowed

Field can be left blank
Pass

AGM Election AGM Election is the only option Pass

Start Date
Must be in format DD-MM-YYYY

and cannot exceed the end date
Pass

End Date
Must be in format DD-MM-YYYY

and cannot precede the end date
Pass

Create User Form

First Name Letter only no spaces Pass

Last Name Letter only no spaces Pass

 116

Email
Valid email address cannot

already exist on the system
Pass

Password
Must be at least 10 characters

long
Pass

User Type
Options are limited to Admin or

Student
Pass

Privilege Options are limited to 1,2,3 Pass

Create AGM Contest

Contest Name Letter only with spaces allowed Pass

Contest Description Letter only with spaces allowed Pass

Candidate Name Letter only with spaces allowed Pass

Candidate Email Valid email address Pass

8.3.4 Security Testing

The purpose of security testing is to ensure that the application has met all the criteria set out in Chapter 6:

Security Analysis. Indeed, this section aims to check that the risk controls specified in the risk assessment

have been implemented and work as expected.

Figure 62 below is a code snippet showing the verifyToken function. This function is call before every

endpoint in the node.js server. If the privilege required to access the endpoint is higher than the privilege

stored in the access token, a 400-status code will be sent back to the client-side. This ensures that only users

with the correct privileges can access certain aspects of the system.

Figure 62: VerifyToken function in Node.js Server

 117

The table below shows the security controls that where implemented. Evidence of these security controls can

be found within the code submitted with this report. Furthermore, these security controls were

demonstrated to the supervisor of this project.

Ref Control Description Implemented?

C1 JSON Web Tokens

(cookies)

Json Web Tokens will be used to

ensure that only though with

authorised can access data from

endpoints.

YES

C2 Protected Routes in

React

Protect Routes is a library in react that

can be used to restrict users without

authorisation from certain pages. This

can be to prevent student users from

access pages restricted to administers.

YES

C3 Hashing of Password Passwords will be hashed using library

BCrypt when new users are registered.

YES

C4 Third party hosting

and maintenance

The React Web Application will be

deployed using Netlify and the server

will be deployed using Heroku. Heroku

has its own contingency plan to handle

network server downtime as well as

DOS protection.

YES

C5 Using HTTPs The domain for both the client and

node.js server use HTTPS to transfer

data. This makes it more difficult for

attackers to intercepted data.

YES

C6 Using CORS in

node.js server

CORS which stands for Cross-Origin

Resource Sharing is a JavaScript library

that can be used to set a specific

domain that the server will accept

requests from. This will prevent

requests to the server that do not

come from the domain of the react

application.

YES

 118

8.4 User Acceptance Testing
User acceptance testing is an important pillar of developing any piece of software. The main purpose of UAT

is to check that an application as a whole is in an acceptable condition for users. To do this the application

was used to run a real AGM election at the University of Surrey, where all actors including the admin was a

third party. Below is a description of how the election went and the feedback from users.

8.4.1 AGM Election Summary

The society that agreed to use the system for their AGM was called ACS. This is a small cultural society at the

university and was an ideal society to test the produced application on. The election was host on a zoom call

and had five main stages:

Configuration of Accounts: Accounts had to be made for all attendees of the AGM. A total of 6 people were

expected to come to the AGM, so a total of six accounts was created by the administrator. Users were then

sent their credentials via email before the AGM started.

Configuration of Elections: An Election had to be created on the system for the AGM. As there were three

positions up for grabs a total of three AGM contests had to be created. All three contests had two valid

candidates. Figure 63 shows all three contests that were created for the ACS election.

Figure 63: Election and Contests for ACS AGM

Voting Process: After the election had been configured the users were asked to use their votes to scan the

QR code and vote in the election. Users that were using their desktops were sent the links to each contest via

zoom. Users where then given 10 minutes to cast the vote before the contests were close and no more votes

could be cast. Figure 64 shows the QR code for the presidential contest.

 119

Figure 64: QR code for Presidential Contest

Release Results: Once the election had been ended by the admin, they released the results. Figures 65 shows

the outcome of the presidential AGM contest. The election results were consistent with how students said

they voted.

Figure 65: Results of Presidential Contest

Verify Vote: After the results had been release the user was able to verify that their vote had been counted

correctly.

8.4.2 UAT Findings

The trial election was a huge success, all users where able to log into the application and vote in the three

AGM contests. Furthermore, after conducting the AGM election users were asked to give feedback of their

experiences. The feedback was mostly positive with a few recommendations (see suggested improvements

below).

The majority of users liked the UI describing it as “professional”, “simple” and “easy to use”. In addition,

users found the colours of the application blue, white and red to blend well together, giving the application

 120

an aesthetically pleasing feel. In addition, users liked the logo of the application especially the use of a stag

which is the mascot of the University of Surrey. On the voting process users found the application to be

intuitive, as it only required a voting link. Users who used the application on their phone appreciated the

ability to access the election via a QR barcode. When asked if they trusted the application, students felt that

the ability to verify how they voted as well as the professional look of the application made the system

trustworthy.

Admin users also found the ability to manage the system intuitive and easy to use as it required little

technical knowledge. In addition to this the admin appreciated the fact that AGM contests were embedded

into an overall election, as it makes the management of the AGM process much easier.

In addition to running the election users were asked to “play around” with the application. This was done to

see if there were any flaws within the application that an adversary could exploit. Gladly users where unable

to access restricted pages or perform tasks that they were not authorised to do.

One observation of the UAT conducted is that it did not test how the application would perform with a

significant number of users. Furthermore, the application performed well with only 7 users which is typical of

an AGM election. However, if multiple AGMs are being conducted at the same time it is unclear if there will

be problems with the applications performance. To ascertain whether performance is an issue with large

volumes of users, load balance tests will have to be conducted.

8.4.3 UAT Suggested Improvements

After the completion of the election users were asked to give constructive criticism of the application and any

features they would like to see in the future. These features included:

Clearer results: Currently the results show the total number of votes received by each candidate in the

election. Users thought that it would be better for the results to also display the winner of the election as

opposed to just the tally of the votes. In addition to this, users thought it would also be beneficial if the total

voter turnout was displayed on the results screen as well.

Option for Preferential voting: Currently the system only supports first past the post voting, in which a

candidate can only vote for one candidate. Users expressed the desire to be able to vote using a preferential

voting system such as AV and STV (in which voters rank candidates).

Help Page: Although users found the application intuitive, users thought that it would be beneficial to have a

help page. This page would graphically demonstrate how users could use the application to vote.

Confirmation Messages: When performing important and unchangeable action such as voting and deleting

elections, the application is unforgiving. This is because there is no pop-up message that allows users to

confirm if they want to perform the action. This could potentially lead to students accidentally voting for a

 121

particular candidate and admins accidentally deleting elections. Therefore, it was suggested that a pop-up

message asking the user to confirm irreversible actions.

Vote Success Confirmation: Currently, after a student votes in an AGM election they are taken back to the

student dashboard page. Users found this confusing as there was nothing confirming that their vote had

been successfully counted. Therefore, it was suggested that a success message be displayed to students after

their vote had been successfully counted.

More Spinners: Currently when a user clicks a button and data is being fetched there is no indication that the

application is fetching the data. This meant that at times many users where unsure if their click was picked up

by the system. It was therefore suggested that spinners be added underneath buttons while data is being

fetched from the server.

Chapter 9: Evaluation & Conclusion

9.1 Introduction
This chapter will evaluate the work produced in this project against the aims and objectives outlined in

Chapter 1: Introduction. In addition, while the previous section focused on testing the application this section

will focus on evaluating the overall effectiveness of the E-Voting system produced. The overall effectiveness

of the application will be measured against the criteria of what makes a good E-voting system outline in

Chapter 2: Research. This section will also discuss the future development of the application, and how the

principles learnt while undertaking this project can be applied in the real world.

9.2 Evaluation of project against objectives
As seen in Chapter 8: System Testing the E-Voting Application produced in this project meets all functional

and non-functional requirements outlined in the Chapter 4: Requirements section. Additionally, the same

can be said about the security controls outlined in Chapter 5: Security Analysis which have all been

implemented. However, these requirements do not cover the project’s objectives. Therefore, to evaluate the

project as a whole we must consider the objectives stated in Chapter 1: Introduction. The table below shows

whether each objective has been met.

 122

Objectives Description Achieved?

(Yes/No)

Objective 1 Explore and understand the attributes and vulnerabilities of an effective E-

Voting system.

Yes

Objective 2 Review technologies and frameworks that can be used to implement an E-

Voting system that functions on IOS and Android devices.

Yes

Objective 3 Gather Requirements through the use of stakeholder interviews, surveys and

focus groups.

Yes

Objective 4 Analyse and evaluate the current E-Voting system used by the Student Union

to conduct elections.

Yes

Objective 5 Conduct a risk assessment to identify threats to the proposed E-Voting system

and propose controls to mitigate them.

Yes

Objective 6 Iteratively design, implement and deploy a new E-Voting system that can be

used on IOS and Android.

Yes

Objective 7 Perform unit, functional, non-functional, cross device and security testing to

ensure that the system functions as expected.

Yes

Objective 8 Conduct UAT testing, by trialling the application in one or more AGM

elections to demonstrate the utility of the new system.

Yes

Objective 9 Gather feedback and recommendations from users, that will be implemented

in future iterations of the application.

Yes

Objective 10 Evaluate the effectiveness of the E-Voting system produced and propose

improvements for future iterations.

Yes

Evidence of objective 1 and 2 can be found in Chapter 2: Research. The first halve of the chapter, the

literature review, examined the fundamentals that make a good E-Voting system, as well as the approaches

that will be taken to develop the new E-Voting system. After evaluating the security vulnerabilities of E-

Voting systems, it was concluded that a security analysis will be conducted before development begins. In

addition, the attributes that determine a good E-Voting system were identified and ranked based on their

importance. It was also concluded that the attributes ranked highest will be prioritised during the

implementation of the application. It was also decided that upon the completion of this project the System

produced will be evaluated against the identified attributes. Lastly after considering a variety of options, it

was decided that the new E-Voting System should be implemented using permissioned Blockchain

technology. The second halve of the chapter provided a justification for the technologies that were used to

develop the application. After looking at a multitude of web technologies, react was used to implement the

 123

UI of the application and node.js was used to implement the server-side. Upon reflection although a

comprehensive literature review was produced, aspects of the literature review were excessive and

unnecessary to the development of the application.

Evidence of Objective 3 and 4 can be found in Chapter 3: Problem Analysis. The chapter provides an analysis

of the meeting held with the Students Union to identify issues they were having with their current voting

system and to ask what features they would like to see in a new E-Voting system. Additionally, the results of

the survey that was carried out on student is presented and analysis to a ascertain the kind of features would

like the E-Voting system to have. The analysis obtained from meeting and survey were used to inform the

requirements in Chapter 4: Requirements. In addition, the latter halve of the chapter breaks down and

explains the USSU current E-Voting system for both AGM election and SurreyDecides elections. The systems

were then analysed to highlight important aspect that of the system that needed to be implemented in the

new E-Voting system. Additionally, the analysis of the system also allows for security flaws and areas that

need to be improved to be identified. In reflection, the scope of the E-Voting application should have been

mapped out prior to the Problem analysis being conducted. This is because, it was later decided in Chapter 4:

Requirements that system was going to replace the USSU’s AGM election system and not their SurreyDecides

E-Voting system. This would have saved time that could have been spent on development as the

SurreyDecides system would not have needed to be analysed.

Chapter 6: Security Analysis acts as the evidence for Objective 5. In this chapter a full risk assessment was

conducted to assess how secure the E-Voting system designed in Chapter 5 was. The assessment began by

seeking to identify all risks to the system (no matter how small). After this was done, it was then necessary to

calculate the likelihood and impact of each identified risk. The last part of the risk assessment proposed

solutions to mitigate the identified risks. Furthermore, section 6.5 Security Treatment then explained how

the security controls proposed could be built into the system. Conducting the risk assessment proved to be

worthwhile as it is much easier to build an application with security controls, than to implement security

controls after the application has been built. However, in hindsight it would have been better to have

conducted a security analysis prior to designing the application, as it could have saved time.

Chapter 5: Design, Chapter 7: Implementation as well as the finished version of the application stands as

evidence for Objective 6. In Chapter 6, a variety of diagrams were produced to represent how the application

will function. On balance the chapter did a great job at explaining the systems overall architecture and how

different components would interact in order to perform tasks for users. Having said this, this chapter could

have referenced common design patterns, as it would have led to a more robust system being produced.

 124

Chapter 7: Implementation highlights the important functions within the application and discusses the

technical challenges during the development process. The chapter also details how the application was

deployed such that it can be accessed by users to carry out an AGM Election. Requirements were split up to

different sprints allowing for an iterative approach to be taken to develop the application. Having said this, it

was difficult to stick to the principles of agile development as many of the principles work best in small teams

of developers.

Evidence of objectives 7, 8 and 9 can be found in Chapter 8: System Testing. In this chapter rigorous testing

was conducted on the final version of the application. The application including the smart contracts had a

test coverage of over 90%. In addition, all functional and non-functional requirements were successfully

implemented. Further, as part of UAT the application was used to conduct an AGM election at the university

of surrey. The application was able to run the AGM election from end to end with no major issues.

Afterwards feedback, which was mostly positive, was gathered and will be used to plan the next phase of

development for the E-Voting system. Although the testing of the system was robust and of high quality,

further testing should include load balancing testing. This will ensure that the E-Voting system performs well

when there is a large volume of users.

Objective 10 which evaluates the effectiveness of the E-Voting system and discusses further work can be

found in section 9.3 Evaluation of E-Voting System and 9.4 Future Work.

9.3 Evaluation of E-Voting System
According to academic literature there are a comment set of attributes that make an E-Voting system

effective. These attributes were discussed in section 2.3 What makes a good E-Voting system? and will be

used to evaluate the effectiveness of the E-Voting system produced. The table below show whether an

attribute has been met and provides a justification.

Attribute Description Achieved?

(Yes/No)

Accuracy Votes cannot be altered during transmission or during the counting of

votes, and it is impossible for ineligible voters to vote and for invalid votes

to be counted.

Yes

Verifiability Voters should be able to independently check that their vote was

recorded correctly.

Yes

 125

Democracy Combination of accuracy and verifiability. E-Voting system permits only

eligible voters to vote, only once.

Yes

Reliability An E-Voting system is considered reliable if it continuously performs its

function as expected.

Yes

Semi-Privacy An E-Voting system upholds privacy if a third party cannot determine how

an individual voted in the election.

Yes

Mobility An E-Voting system is considered mobile if there is no restriction on the

location from which an eligible voter can vote.

Yes

Convenience An E-Voting system is considered to be convenient if it allows users to

quickly and easily vote, with minimal technical skill.

Yes

Flexibility The administrator should be able to change election rules such as eligible

voters, a student's ability to change their vote, the start and end date of

elections, and the electoral System being used, i.e., switching between

FPTP and STV.

Partially

Social

Acceptance

An E-Voting system is considered to have social acceptance if it is

perceived as being an effective system by the majority of students.

Yes

Below is an explanation of how each attribute is met.

Accuracy: The system prevents users from being able to vote by keeping a record of students that have

already voted. Additionally, all students at the university of surrey are eligible to vote in AGM elections. And

because only students will have access to the system, only eligible voters will be able to vote. Lastly the

system prevents votes from being altered during transmission by using HTTPS when data is sent between the

React Web Application, Node.js server and the Blockchain.

Verifiability: As shown in Chapter 8 System Testing, Students are able to verify their vote once the election

results have been released by the admin.

Democracy: Both accuracy and verifiability are met, and the system only allows users to vote for a single

candidate, once.

Reliability: As demonstrated in UAT the application has been deployed and can be used to run AGM elections

from start to finish with no major issues.

Semi-Privacy: How a student voted is securely stored on the blockchain and a third party cannot find out how

a user has voted (not even the admin). In addition, students will only be able to find out how they voted after

the election results have been released.

Mobility: As demonstrated in cross device testing the application can be used by anyone with a modern web

browser and an internet connection.

 126

Convenience: After the UAT was conducted students described the application as being simple and easy to

use. Furthermore, the application requires no technical skills to be able to use the system to vote.

Flexibility: While admins are able to delete students from the system (revoking their voting eligibility) they

are unable to change the electoral system used to conduct the election. It is for this reason that this attribute

has been partially met. Having said this, this feature will be implemented in a future iteration of the

application.

Social Acceptance: Feedback taken from users after the UAT was conducted shows that students trust the

application and will therefore trust the election results it produces.

9.4 Future Work
After demoing my application to USSU staff many of them were impressed by what the application could do,

in such a relatively short amount of time. They expressed an interest in the continual development of the

application, and asked if they could receive regular updates on the progress of the application going forward.

While this project was a huge success the E-Voting system in its current form allows AGM election to be

conducted at a basic level. This section will build on from section 8.4.3: UAT suggested recommendations

and discuss the additional functionalities that will be implemented in future versions of the application.

These features will include:

Feedback from UAT: First and foremost, the recommendations gathered from the UAT Tests should be

implemented as a top priority. As these suggestions have come directly from users, implementing these

features will improve the overall user experience of the E-Voting Application.

SurreyDecides Elections: Chapter 3: Problem analysis included an analysis of the issues that the USSU were

experiencing with their existing E-Voting system, Mi-Voice. However, due to the time constraints of this

project it was not possible to produce a new system that could be used for both AGM and SurreyDecides

elections. Therefore, it would be appropriate to extend the E-Voting system to allow for SurreyDecides

Elections to be run using the system. This would mean that Election officers would gain the ability to create,

edit and delete SurreyDecides elections. In addition, students would gain the ability to nominate themselves

as a candidate in SurreyDecides Elections, as well as upload their own candidate information. This candidate

information will include their manifesto commitments and a profile picture of the candidates. Giving the E-

Voting system the ability to conduct SurreyDecides elections as well as AGM elections will mean that the two

most important elections at the university can be run using the same application. This will give election at the

University of Surrey an ecosystem student and admins will be familiar with.

 127

Society Self Registration: Another feature that would make running elections at the University of Surrey

easier is the ability to allow society leaders to self-register their society for an AGM. Admins would then have

the option to approve or discard the AGM election. This would save the staff at the USSU time, allowing them

to focus on other tasks.

Load Balance Testing: As stated in Chapter 8: System Testing, load balance testing was not carried out during

the development of the application. This will need to be done in order to ascertain if the system can support

a large volume of users.

Surrey365: If this application is to be adopted by the University of Surrey, it will need to be integrated with

the Universities single sign in system. Unfortunately, this could not be done in this project as the IT

department refused to grant access to it. However as stated previous the USSU has agreed to lobby the IT

department. Therefore, future versions of the application should allow users to login to their account using

the same credentials they use for outlook and SurreyLearn.

9.5 Conclusion
In summary, completing this project was heart-warming; being able to produce a system that leveraged

technologies to improve the election process at the University of Surrey was truly fulfilling and rewarding.

When measuring the project against its aim, which was to produce a new secure e-voting system that can be

used to conduct AGM elections at the University of Surrey, the project has been a huge success. As shown in

this chapter the projects have been able to meet all of its objectives, and can be considered an effective E-

Voting system in line with attributes gathered from academic literature. Additionally, important skills such as

researching and understanding academic literature, full stack development using react and node.js,

blockchain development, project management and system testing have been gained from undertaking this

project. The hope is that these skills can be used to solve real world problems and continue the development

of the E-Voting system.

 128

References

[1] Office for Students, “National Student Survey - NSS,” Office for Students, 24 09 2020. [Online].

Available: https://www.officeforstudents.org.uk/advice-and-guidance/student-information-and-

data/national-student-survey-nss/get-the-nss-data/#datafiles. [Accessed 08 10 2020].

[2] Surrey Students' Union, “Surrey Decides 2020 Elections Summary,” Surrey Students' Union, 07 03 2020.

[Online]. Available: ussu.co.uk/voice/Elections/Pages/SurreyDecide.aspx. [Accessed 09 10 2020].

[3] The London School of Economics Students' Union, “LSE Students' Union Election 2020 Stats,” The

London School of Economics Students' Union, 2020. [Online]. Available:

https://www.lsesu.com/democracy/elections/election-stats/. [Accessed 09 10 2020].

[4] Royal Holloway Students' Union, “Royal Holloway Election 2020 Stats,” Royal Holloway Students' Union,

2020. [Online]. Available: https://www.su.rhul.ac.uk/voice/elections/lead/. [Accessed 09 10 2020].

[5] Fairvote, “Voter Turnout 101,” Fairvote, [Online]. Available:

https://www.fairvote.org/voter_turnout#voter_turnout_101. [Accessed 09 10 2020].

[6] Surrey Students' Union, “Pulse Report,” Alterline, 01 07 2020. [Online]. Available:

https://www.ussu.co.uk/yourunion/Pulse%20Reports/2019/Student%20Life%20Pulse%20-

%20The%20University%20of%20Surrey%20Students'%20Union%20-%20Pulse%203%2019-20.pdf.

[Accessed 09 10 2020].

[7] A. Altvater, “what-is-sdlc,” 8 04 2020. [Online]. Available: https://stackify.com/what-is-sdlc/. [Accessed

1 10 2020].

[8] I. Sommerville, “Professional Software Development,” in Software Engineering, Global Edition, Pearson

Education Limited, 2016, pp. 22-24.

[9] Lucidchart Content Team, “Pros and cons of waterfall methodology,” 5 10 2017. [Online]. Available:

https://www.lucidchart.com/blog/pros-and-cons-of-waterfall-methodology. [Accessed 1 10 2020].

[10

]

I. Sommerville, “Software process models,” in Software Engineering Global Edition, Pearson Education

Limited, 2016, pp. 45-51.

[11

]

D. Gritzalis, “Principles and requirements for a secure e-voting system,” Computers & Security, vol. 21,

no. 6, pp. 539-556, 2002.

[12

]

T. Scott, Director, Why Electronic Voting Is Still A Bad Idea. [Film]. YouTube, 2019.

 129

[13

]

S. Talab and A. Al-Ameen, “The Technical Feasibility and Security of E-Voting,” The International Arab

Journal of Information Technology, vol. 10, no. 4, 2013.

[14

]

OASIS, “Election Markup Language,” OASIS, 2011.

[15

]

The University of Surrey Students’ Union, “The University of Surrey Students’ Union Byelaws,” 2019.

[Online]. Available:

https://www.ussu.co.uk/yourunion/Governing%20Documents/Constitution%20and%20Byelaws/Byela

ws.pdf. [Accessed 01 11 2020].

[16

]

E. M. and F. S., “Internet-Based Security Incidents and the Potential for False Alarms,” Electronic

Networking Applications and Policy, vol. 10, no. 3, pp. 238-245, 2000.

[17

]

The Electoral Commission, “Electronic voting May 2007 electoral pilot schemes,” The Electoral

Commission, 2007.

[18

]

S. Gupta, “Types of Malware and its Analysis,” International Journal of Scientific & Engineering

Research, vol. 4, no. 1, 2013.

[19

]

Sophos, “THE STATE OF RANSOMWARE 2020,” Sophos, 2020.

[20

]

Washington University Computer Science, “Design and Implementation of a Security-Conscious

Electronic Polling System,” Washington University Computer Science, 1996.

[21

]

E.-S. A, “Fast Cryptographic Privacy Preserving Association Rules Mining on Distributed Homogenous

Database,” The International Arab Journal of Information Technology, vol. 7, no. 2, pp. 152-153, 2010.

[22

]

P. A and K. S, “How to Improve Security in Electronic Voting,” Ubiquity Information Everywhere, vol. 8,

no. 6, pp. 1-7, 2007.

[23

]

“FIPS 197, Advanced Encryption Standard (AES),” Federal Information Processing Standards

Publications, 2001.

[24

]

A. Zwierko and A. Zwierko, “A Light-Weight e-Voting System with Distributed Trust,” Electronic Notes in

Theoretical Computer Science, p. 109–126, 2007.

[25

]

M. Nofer, P. Gomber, O. Hinz and D. Schiereck, “Blockchain,” Business & Information Systems

Engineering, vol. 59, pp. 183-187, 2017.

[26

]

K. Wüst and A. Gervais, “Do you need a Blockchain?,” 2018 Crypto Valley Conference on Blockchain

Technology, pp. 45-54, 2018.

[27

]

Z. Zheng, H.-N. Dai and S. Xie, “Blockchain challenges and opportunities: A survey,” International Journal

of Web and Grid Services, vol. 14, no. 4, p. 352, 2018.

 130

[28

]

“RISKS AND OPPORTUNITIES OF BLOCKCHAIN BASED ON E-VOTING SYSTEMS,” 2019 16th International

Computer Conference on Wavelet Active Media Technology and Information Processing, pp. 365-368,

2019.

[29

]

S. Park, M. Specter, N. Narula and R. L. Rivest, “Going from Bad to Worse: From Internet Voting to

Blockchain Voting,” MIT & Harvard, 2020.

[30

]

L. LAMPORT, R. SHOSTAK and M. PEASE, “The Byzantine Generals Problem,” ACM Trans. Program. Lang.

Syst., vol. 4, no. 3, pp. 382-401, 1982.

[31

]

C. Dwork and M. Naor, “Pricing via processing or combatting junk mail,” Annual International

Cryptology Conference, pp. 139-147, 1992.

[32

]

M. S. Ferdous, M. J. M. Chowdhury, M. A. Hoque and A. Colman, “Blockchain Consensus Algorithms: A

Survey,” Cornell University, 2020.

[33

]

QuantumMechanic, “Proof of stake instead of proof of work,” 11 07 2011. [Online]. Available:

https://bitcointalk.org/index.php?topic=27787.0. [Accessed 11 05 2019].

[34

]

Peer Coin, “Peer Coin,” [Online]. Available: https://peercoin.net. [Accessed 24 07 2019].

[35

]

S. Kidecha, “native-vs-hybrid-vs-cross-platform,” 27 05 2020. [Online]. Available:

https://dzone.com/articles/native-vs-hybrid-vs-cross-platform-how-and-what-to. [Accessed 06 11

2020].

[36

]

S. Sharma, “Native-vs-hybrid-vs-cross-platform-what-to-choose,” 09 08 2020. [Online]. Available:

https://medium.com/flutterdevs/native-vs-hybrid-vs-cross-platform-what-to-choose-3221130f7cc5.

[Accessed 06 11 2020].

[37

]

S. Korolev, “Mobile App Development Approaches Explained,” 19 06 2020. [Online]. Available:

https://railsware.com/blog/native-vs-hybrid-vs-cross-platform/. [Accessed 06 11 2020].

[38

]

U. Khan, “The Pros and Cons of Native Apps,” 18 06 2018. [Online]. Available: https://clutch.co/app-

developers/resources/pros-cons-native-apps. [Accessed 06 11 2020].

[39

]

StarDust, “Hybrid-apps,” [Online]. Available: https://www2.stardust-testing.com/en/blog-en/hybrid-

apps. [Accessed 06 11 2020].

[40

]

I. Vyas, “native-vs-hybrid-vs-cross-platform-best-option-for-mobile-app-in-2020,” 20 06 2020. [Online].

Available: https://citrusbug.com/article/native-vs-hybrid-vs-cross-platform-best-option-for-mobile-app-

in-2020. [Accessed 06 11 2020].

 131

[41

]

M. Jonez, “Cross-Platform Mobile Application Development- Benefits and Drawbacks,” 20 01 2020.

[Online]. Available: https://martha-7987.medium.com/cross-platform-mobile-application-development-

benefits-and-drawbacks-b8982095beb0. [Accessed 06 11 2020].

[42

]

G. Cselle, 31 07 2018. [Online]. Available: https://medium.com/gabor/every-step-costs-you-20-of-users-

b613a804c329. .

 132

Appendices
11.1 Appendix A: Consent form

E-Voting System for the USSU: Consent Form

Ayoolamide Oye-dada (Tobi Dada) is a final year student at the University of Surrey. As a final year Computer

Science student Tobi Dada is required to complete a project. Tobi has decided to produce a new E-Voting

system that can be used by the University of Surrey Student Union to hold elections. Tobi’s final submission

will need to include the functioning E-Voting System as well as a report detailing how the system was

developed from end-to-end. Once submitted the report will become the property of the University of Surrey

and will be marked by two University of Surrey lecturers. Furthermore, the University of Surrey will have the

prerogative to share the report with others.

I

hereby give consent for Tobi Dada to use quotes, statements and observations made by myself in his report,

on the bases that I can be directly named.

I

hereby give consent for my quotes, statements and observation to be shared with and used by the University

of Surrey.

Sign here: Date:

 133

11.2 Appendix B: Gantt Chart

11.3 Appendix C: E-Voting System Survey
Please provide your University of Surrey email.
Open Response
What is your ethnicity?
White
Mixed or Multiple ethnic groups
Asian or Asian British
Black, African, Caribbean or Black British
Prefer not to say
What is your year of study?
First Year
Second Year
Third Year
Fourth Year
Other…
What course do you study?
Open Response
What is your gender?
Male
Female
Other
Prefer not to say

Have you voted in a Students Union election before?
Yes
No
Can you rate your overall experience when using the Students' Union's Voting system?
1 – Very Bad

 134

2 – Bad
3 – Neutral
4 – Good
5 – Very Good
Do you trust that the E-Voting system used by the Students' Union's properly records and counts all
votes?
Yes
No
I don’t know
Do you trust the Students' Union to carry out Student elections fairly and impartially?
Yes
No
What devices would you want to vote on(select 2)?
Phone (iPhone and Android)
Laptop
Tablet
What is the most important aspect of an E-Voting system to you?
Security – the system cannot be hacked by a third party in order to influence the election.
Democratic – all eligible students are able to vote once for their preferred candidate(s).
Usability – a user friendly an intuitive UI
Reliability – the System will function as indented for the entirety of the election.
Privacy – A third party cannot discover how an individual voted in the election.
Social Acceptance – Understanding the technology being used by the E-Voting System
Do you have any concerns about voting via a web application?
Yes
No
I don’t know

If you answered yes to the previous question, what are your concerns?
Open response

Are there any features or ideas that you would like to see added to the Students' Union's existing E-
Voting System?
Open response

 135

11.4 Appendix D: E-Voting System Survey

 136

 137

 138

 139

 140

 141

 142

 143

 144

11.5 Appendix E UI Validation

Figure 66: User Form Validation Evidence

 145

Figure 67: User Validation Evidence

11.6 Appendix F UI Pages Final Version

Figure 68: Voting Page Desktop

 146

Figure 69: Go to Contest Page Desktop

Figure 70: Student Dashboard

 147

Figure 71: Edit Election Page

 148

Figure 72: Create Contest Page

Figure 73: Create Election Page

 149

Figure 74: User Account Table

Figure 75: View Election Table

 150

Figure 76: Create Election Form

Figure 77: Admin Dashboard Page

